The growing demand for rice and the increasing pressure on irrigated land in Madagascar is strengthening efforts to developing upland rice systems. Actual yield is below its potential yield in farmers’ field due to biotic and abiotic stresses. In higher altitude, specific cold tolerant upland rice genotypes are planted due to temperature constraints. According to climate change prediction, it is easy to expect positive effects on upland rice production systems in high altitude. The rise in temperature will increase productivity mainly via reduced spikelet sterility, considering that other climatic parameters such as rainfall patterns will not have adverse effects. Climate change will increase the number of genotypes which can be cultivated in upland areas; however genotypes still will be sensitive to weather experienced during sensitive physiological and phenological periods. To avoid negative impacts, crop adaptation strategies are needed in terms of varietal development and crop management. Grain yield depends on genotype, environment and management practices and their interaction with each other (Messina et al., 2009). Under the same management conditions, variation in grain yield is principally explained by the effects of genotype and environment (Dingkuhn et al., 2006). Interaction between these two explanatory variables gives insight for identifying genotype suitable for specific environments. The objective of this study was to compare contrasting genotypes which cover a broad range of phenological and physiological traits across a temperature gradient in Madagascar in order to quantify the extent of genotype by environment interaction and to characterize yield stability and adaptability across different environments.