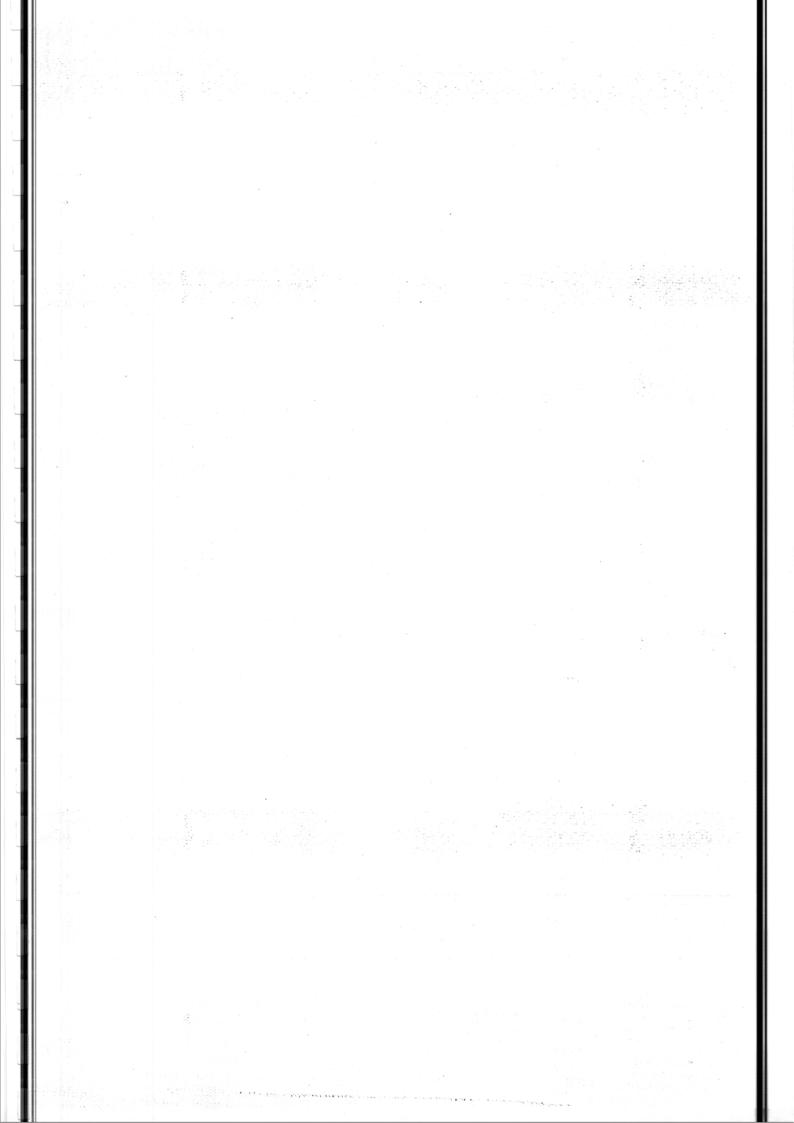
R. Miduller

ONG TAFA


Tany sy Fampandroasoana

Convention TAFA-Maison des Paysans

RAPPORT D'ACTIVITE Campagne 1999/2000

Brigitte Langevin Hubert Razafintsalama

SOMMAIRE

I. Généralités sur le Sud Ouest malgache
I.1 Le milieu physique
I.2 L'environnement agricole
I.3 Les enjeux du semis direct sur couverture végétale
II. Les expérimentations de l'ONG TAFA
II.1 Les dispositifs
II.2 Descriptions des opérations
II.3 Description du matériel végétal
II.4 Densité de semis
II.5 Niveaux de fumure
II.6 Protection phytosanitaire
II.7 Suivi des parcelles
III. Les résultats
III.1 OP1 act1 : Cultures associées en semis direct sur résidus
III.1.1 Dates des cycles des différentes cultures
III.1.2 Mais en association avec les légumineuses
III.1.3 Sorgho BF80 en association avec les légumineuses
III.1.4 Sorgho Irat 204 en association avec les légumineuses1
III.1.5 Mil Irat 96 en association avec les légumineuses
III.1.6 OP1-2 Cultures associées en semis direct sur résidus : parcelles supplémentaires2
CONCLUSIONS
III.2 OP1-3&4 : Cultures associées en semis direct sur résidus, rotation de deux ans céréales/légumineuses
avec du coton pour l'activite 4
III.2.1 Culture de maïs associé aux légumineuses
III.2.2 Culture de sorgho BF80 associé aux légumineuses
III.2.3 Culture de sorgho I204 associé aux légumineuses
III.2.4 Culture du mil associé aux légumineuses
III.2.5 Culture de coton
CONCLUSIONS
III.3 Opération 2, 3 et 4 : cultures pures
III.3.1 Classification des opérations
III.3.2 Association maïs-arachide-pois de terre
III.3.3 Cultures pures de coton
III.3.4 Cultures pures de maïs
III.3.5 Cultures pures de sorgho BF80
III.3.6 Cultures pures de sorgho I204
III.3.7 Cultures pures de mil
III.3.8 Cultures pures de légumineuses
III.3.9 Cultures pures d'arachide
III.3.10 Cultures pures de céréales et légumineuses à Sakahara
CONCLUSIONS4
III.4 OP-5 Cultures alimentaires sur couverture vives
III.4.1 Andranovory
III.4.2 Sakahara
III.5 Collections et multiplication de semences
III.5.1 Collections de vigna
III.5.2 Collections de mil
LISTE DES ANNEXES5
1401114 DEM (AININE A EX)

I. GENERALITES SUR LE SUD OUEST MALGACHE

I.1 LE MILIEU PHYSIQUE

La partie du Sud Ouest malgache comprise entre le fleuve Mangoky (au Nord) et l'Onilahy (au Sud) correspond à ce que l'on appelle le Sud Ouest «utile ». En effet, c'est dans cette sous- région que les possibilités de production agricole sont les plus importantes grâce à des disponibilités en eau d'irrigation et à un potentiel sol non négligeable. D'une surface de 31600 km², la région est à cheval sur deux formations sédimentaires, la zone littorale (0 à 300m), et la zone de plateaux (300 à 800m). Les sols sont essentiellement ferrugineux tropicaux (« sables roux »), à très faible réserve utile en eau. Leur mise en valeur est hasardeuse du fait d'une pluviométrie faible et capricieuse. En effet, la zone est caractérisée par une longue saison sèche (8 à 10 mois) et la majorité des pluies de saison chaude est due aux orages de formation locale. L'origine convective des précipitations déterminera donc des quantités d'eau très variables d'un point à un autre de la région et pour un même point d'une année sur l'autre.

1.2 L'ENVIRONNEMENT AGRICOLE

L'agriculture du Sud Ouest est essentiellement représentée par des petites exploitations familiales à faible rendement et combinent souvent plusieurs activités : l'agriculture de subsistance est fréquemment pratiquée en même temps que l'élevage et parfois même l'artisanat selon les saisons. Originellement concentrée dans les bas fonds, où les ressources en eau permettaient de compenser une pluviométrie insuffisante et capricieuse (rizières irriguées ou cultures de décrues sur <u>baiboho</u>), l'agriculture est en extension depuis une dizaine d'année du fait de nouvelles opportunités économiques (maïs, coton) et d'une importante dynamique pionnière accompagnée par le développement des systèmes de culture sur abattis brûlis. L'augmentation de la densité de la population et la pratique des feux de brousse ne permet pas à la régénération de la forêt, et la dynamique de déboisement est aujourd'hui bien entamée, dégradant ainsi l'environnement d'une manière radicale.

1.3 LES ENJEUX DU SEMIS DIRECT SUR COUVERTURE VEGETALE

Le déboisement a entraîné non seulement une réduction de la fertilité des sols, mais encore l'apparition ou l'aggravation de l'érosion. De plus, la disparition de vastes étendue de forêt a pour conséquence importante une tendance à l'assèchement du climat, et dans une zone faiblement arrosée comme le Sud-Ouest malgache, cet assèchement pourra éventuellement conduire à l'apparition de phénomène de désertification. Le défrichement se poursuivra probablement tant que les cultures qui y seront rentables (productivité, éloignement des zones d'habitation et de commercialisation). Des systèmes agraires post-forestiers devront forcement se développer devant cette double crise écologique et de subsistance. Les contraintes les plus limitantes du rendement en agriculture stabilisée sont d'une part, la faiblesse et l'irrégularité des précipitations, et d'autre part, l'envahissement des parcelles par les adventices. Le labour et le sarclage n'apportent pas les solutions escomptées pour la préservation des sols et la reproductibilité des cultures. Les systèmes avec semis direct sur couverture végétale (SDCV) testés avec l'ONG TAFA depuis 1994, sous l'impulsion de Lucien Séguy (ingénieur CIRAD, pionnier des techniques de SDCV dans les zones tropicales) apportent des solutions intéressantes en supprimant le travail du sol et la majorité des sarclages tout en augmentant le rendement. La productivité du travail (facteur limitant le plus courant en agriculture pluviale dans le Sud-Ouest) est considérablement améliorée (augmentation des rendements et diminution des temps de travaux).

II. LES EXPERIMENTATIONS DE L'ONG TAFA

II.1 LES DISPOSITIFS

Dans la région du Sud Ouest, l'ONG TAFA a expérimenté divers dispositifs avec les techniques de SDCV. Les cultures en SDCV sont en priorité celles des agriculteurs (maïs, coton, arachide), mais également de nouvelles cultures (sorgho, mil, vigna) avec l'introduction d'espèces améliorées. Toutes ces cultures sont pluviales. TAFA a installé 4 sites de références dans des zones aux caractéristiques pédo-climatiques différentes afin de recouper les différentes situations rencontrées dans le Sud-Ouest. Les annexes 1 et 2 donnent les descriptifs des sites de références et la pluviométrie de la campagne 1999-2000. Les systèmes de cultures sont conçus pour offrir aux agriculteurs un large choix technologique (type de culture, association, niveaux d'intrants...). Les dispositifs adoptés constituent avant tout une vitrine, support de démonstration des avantages du SDCV par rapport aux techniques traditionnelles de labour et sarclage. Même si les expérimentations sont utilisées pour sélectionner les meilleures variétés, associations, rotation, etc, ils ne permettent pas de vérifier statistiquement des liens de causalité. Ainsi, l'interprétation des résultats est souvent délicate et hasardeuse du fait de la multiplicité des facteurs qui peuvent influer sur les rendements.

II.2 DESCRIPTIONS DES OPERATIONS

Le tableau ci-dessous donne une description succinctes des différentes opérations, divisées en activités et thèmes dans les sites d'Andranovory (And), Sakahara (Sak), Ankazoabo (Ank) et Anb (Andaboro).

OP	Act	Th	localité	description		
1	1	-	And, Sak, Ank	Cultures de céréales fixées associées à une légumineuse		
1	2	-	And	parcelles supplémentaires de sorgho associé au vigna		
1	3	-	Anb	Culture de céréales fixées associées à une légumineuse		
				culture pure de mais sur labour et coutrier sans rotation		
1	4	-	Anb	Culture de céréales fixées associées à une légumineuse en rotation avec		
				le coton semé directement sur résidus		
				culture pure de coton sur paillage, labour et coutrier sans rotation		
2	1	1	And, Ank	Diversification : rotation céréales/légumineuses en culture pure		
				intercalées entre des parcelles d'association maïs/arachide/pois de terre		
2	1	2	And, Ank, Sak	Diversification : rotation de coton /céréales & légumineuses/coton en		
				cultures pures intercalées entre des parcelles d'association		
				Maïs/arachide/pois de terre		
3	1	-	And, Ank	Cultures pures avec techniques conventionnelles (labour et coutrier)		
4	1	1	And, Ank	Rotation de coton légumineuse en cultures pures		
4	1	2	And, Sak	Cultures pures avec techniques traditionnelles		

II.3 DESCRIPTION DU MATERIEL VEGETAL

Les cycles des cultures correspondent au nombre de jours entre la levée et la maturation des grains. Les cycles vont de 70 (black eye) à 145 jours pour le coton, et >200 jours pour la dolique. Dans la description cidessous, on considère que les cycles de 70 à 90 jours sont courts, moyens de 90 à 110 jours, et longs au delà de 110 jours.

Espèces	caractéristiques principales
Maïs	
OC202	variété brésilienne, cycle long, produit une biomasse importante
Sorghos	
BF80	variété brésilienne de cycle long, photosensible, de grande taille (2.5m en
	moyenne), à panicule lâche et grains farineux
Irat 204	variété brésilienne de cycle moyen, photosensible, de petite taille (1.5m en
	moyenne) à panicule lâche et grains farineux
Mil	
Irat 96	Ce sont des mils de cycle moyen à long, sélectionner pour leur tenue sanitaire, la
Irat 30	résistance à la sécheresse, la biomasse produite.
Irat 31	A noter cette année des problèmes de levée pour l'Irat 96
Vigna (niebe)	
splm1	vigna rampant de cycle moyen, grain rouge-orangé de taille moyenne
splm2	vigna très rampant de cycle long, bon développement racinaire, grain rouge foncé
	de taille moyenne
TVX	vigna rampant de cycle long, à grain rouge foncé de taille moyenne
(Fofifa)	
black eye	vigna érigé de cycle court (les bonnes années de pluviométrie, il est possible de faire deux cycles durant la saison chaude). Ce vigna est sensible à l'engorgement et produit peu de biomasse. Les grains, de taille moyenne, sont blancs avec la zone d'insertion du pédoncule noire
Dolichos lab	Originaire du Niger, cette variété très volubile, à gros grain rouge orangé est la
lab	plus utilisée par les paysans. A cycle très long (<200j) elle permet un étalement de
	production de biomasse pendant la saison sèche. Les racines puissantes peuvent
	atteindre 2 mètres de profondeur.
Coton	Deux variétés de coton sont utilisées suivant le type de sols, D388 sur sols
	humifères et vertisols (Andaboro et Andombiry), et Guazencho, qui souffre de
	l'engorgement, se cultive sur des sols plus sableux comme à Andranovory et
	Sakahara. La fibre de Guazencho est de meilleure qualité

II.4 DENSITE DE SEMIS

Culture	interligne cm	distance entre poquet sur la ligne (cm)	grains/poquet après démariage	densité pieds/ha
Maïs	100	30	2	66 600
Sorgho et mil	100	20	2	100000
Vigna				
associé à céréales	100	20	2	100 000
en culture pure	50	20	2	200 000
Dolique	100	` 50	2	45 000
Arachide	40	45	. 1	166.666
Coton	80	25	2	160 000

II.5 NIVEAUX DE FUMURE

Selon les opérations on distingue différents niveaux de fumures croissants : F0, F2, F3 et F1(voir ci-dessous). Dans les opérations à deux niveaux de fumures, la dose préconisée (DP) correspond à F1 et la demi dose (DD) à DP/2.

Pour les céréales en cultures pures ou associées

F0: aucune fumure

F1: niveau de fumure élevé.

200 kg de NPK(11-22-16) (300 kg pour le maïs) et 150 kg d'urée 46% en deux apports

F2: enrobage des semences avec 3 grammes d'hyper reno par kg de semences

F3: F2+ 2 tonnes/ha de compost amélioré (2 tonnes de fumier de parc + 100 kg hyper reno+5kg

KCl)

arachide

DP: 150 kg/ ha de phosphate d'ammoniac

vigna en cultures pures

DP: 200 kg/ha NPK(11-22-16)

coton

DP: 75 kg/ha de Phosphate d'ammoniac + 75 kg/ha urée 46%

II.6 PROTECTION PHYTOSANITAIRE

Toutes les parcelles sont traitées au gramoxon (herbicide de contact) à 1.51/ha avant les semis. Les semences sont traitées avec les antifongiques thiram (2g/kg de semence) et carbosulfan (4g/kg de semences). Une pincée de carbofuran par poquet prévient les attaques des insectes terricoles.

En entretiens culturaux, les traitements préconisés contre les attaques de chenille poly ou phytophage et les pucerons sont le Decis à 0.31/ha ou le Dursban à 1.51/ha.

Il n'y a aucun traitement chimique contre les adventices, les parcelles de cultures sur labour et coutrier sont sarclées, et les quelques mauvaises herbes en SDCV sont arrachées manuellement.

II.7 SUIVI DES PARCELLES

Le suivi des parcelles a consisté à relever :

- les dates de semis, levée, maturation des cultures principales et plantes de couverture
- le rendement, la hauteur et la biomasse produite pour les céréales,
- le rendement et la biomasse produite pour les vigna,
- le rendement, nombre de gousse et biomasse produite pour l'arachide et le pois de terre
- le rendement, hauteur et nombre de capsule pour le coton

Les dates de levée et de maturation sont notées lorsque 50% des plantes, à vue d'œil, atteignent les stades correspondants Les hauteurs et nombre de capsule ou gousses des cultures sont estimées par la moyenne de cinq plants tirés au hasard dans la parcelle. Ces moyennes sont données avec l'erreur type (standard error) soit l'écart type divisé par la racine de la taille de l'échantillon.

La production de biomasse est estimée par la pesée du matériel végétal prélevé sur un carré d'1 m de côté à l'intérieur des parcelles. En cultures associées, le carré ne comprend qu'une ligne de céréales.

Les biomasses aériennes et souterraines sont prélevées à Andranovory, seulement aériennes dans les autres sites.

On ne dispose pas à la date de la rédaction du rapport (août/00) des dates de maturation, rendement et biomasse relatives à la dolique, ni des coûts des différentes opérations culturales.

III.1 OP1 ACT1: CULTURES ASSOCIEES EN SEMIS DIRECT SUR RESIDUS

4 céréales, maïs OC202, sorgho BF80, sorgho Irat 204 et mil Irat96 sont associées aux légumineuses vigna splm1, vigna splm2 et dolique, soit 12 associations testées au total, chacune à 4 niveaux de fumures. Le sorgho I204, de petite taille, est associé avec le vigna TVX à la place de la dolique car cette dernière est trop volubile et étouffe la céréale (cf. annexe 3).

Les dispositifs (associations culturales et niveaux de fumure) sont les mêmes sur les trois sites d'Andranovory, Andombiry (Ankazoabo) et Sakahara.

Mis en place depuis 1995, ces dispositifs ont été gardés avec leurs niveaux différenciés d'intrants pour montrer que les techniques de SDCV permettent aux écosystèmes cultivés de produire de manière stable en maintenant leur fertilité quel que soit le niveau d'intrant (systèmes sols plantes fermés).

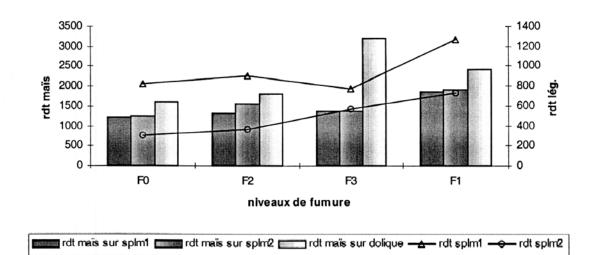
III.1.1 Dates des cycles des différentes cultures

III.1.1.1 Andranovory

	date semis	date levée	date maturation	cycle culture (jours)
				V /
mais OC202	11/12	16/12	05/04	112
sorgho BF80	11/12	16/12	06/04	113
sorgho I204	12/12	17/12	20/03	95
mil I96	07/01	12/01	07/04	87
-				
vigna splm1				
avec maïs	11/12	16/12	29/03	105
avec BF80	11/12	16/12	29/03	105
avec I204	12/12	17/12	29/03	104
avec Mil I96	07/01	12/01	29/03	78
vigna splm2				
avec maïs	11/12	16/12	22/04	129
avec BF80	11/12	16/12	22/04	129
avec I204	12/12	17/12	22/04	128
avec Mil I96	07/01	12/01	22/04	133
vigna TVX	12/12	17/12	22/04	128
dolique				
avec maïs	11/12	16/12		
avec BF80	11/12	16/12		
avec Mil 196	07/01	12/01		

III.1.1.2 Ankazoabo

	date semis	date levée	date maturation	cycle culture (jours)
mais OC202	03/01	12/01	13/05	123
sorgho BF80	6	6	11/05	121
sorgho I204	6	6	08/04	88
mil I96	6	6	21/04	101
	69	6	•	
vigna splm1	6	0	15/04	95
vigna splm2	6	0	22/03	71
vigna TVX	O	6	02/04	82
dolique		6	,	

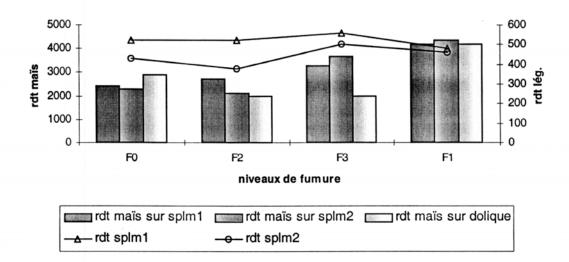

III.1.1.3 Sakahara

	date semis	date levée	date maturation	cycle culture
mais OC202	17/12	23/12	23/03	92
sorgho BF80	18/12	24/12	27/03	95
sorgho I204	17/12	21/12	02/03	73
mil I96	18/12	24/12	23/12	94
vigna splm1				
avec OC202	17/12	23/12	07/03	76
avec BF80	18/12	23/12	6	76
avec I204	17/12	21/12	6	78
avec Mil 196	18/12	23/12	6	76
		-	0	
vigna splm2				
avec OC202	17/12	23/12	06/03	75
avec BF80	18/12	23/12	06/03	75
avec I204	17/12	21/12	10/03	81
avec Mil I96	18/12	23/12	06/03	75
vigna TVX	17/12	21/12	02/03	73
dolique				
avec OC202				
avec BF80				
avec Mil 196				

III.1.2 Mais en association avec les légumineuses

III.1.2.1 Andranovory

•	F0	F2	F3	F1
rendement maïs (kg/ha)				
sur couverture splm1	1230	1310	1370	1850
sur couverture splm2	1240	1550	1370	1900
sur couverture dolique	1600	1800	3200	2400
taille du maïs (m)				
sur couverture splm1	2,28(0.18)	2,11(0.1)	2,19(0.05)	2,29(0.12)
sur couverture splm2	2,23(0.09)	2,15(0.21)	2,27(0.08)	2,21(0.02)
sur couverture dolique	2,13(0.11)	2,08(0.16)	2,08(0.21)	2,11(0.26)
rendement légumineuses				
(kg/ha)				-
splm1	820	900	770	1270
splm2	300	370	570	730
dolique				
Biomasse (t/ha)				
maïs-splm1	10	11.5	20	40
maïs-splm2	40	50	70	85
maïs-dolique				

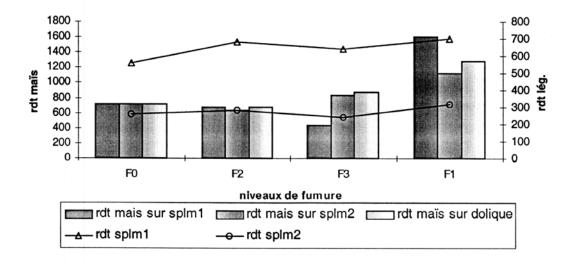


Les rendements du maïs sont satisfaisants en F0 et un peu décevant en F1 (+51% en moyenne). Les fumures F2 et F3, hormis le résultat surprenant du maïs/dolique en F3 n'offre pas d'amélioration notable, e on ne constate pas de tendance sur les tailles des maïs.

Le maïs se comporte ici mieux avec la dolique qu'avec les vignas. On note que le rendement de splm? est toujours supérieur à splm2 quel que soit la fumure (+90% en moy.), alors que les biomasses (ici aérienne et souterraines) sont en moyenne 3 fois plus importante avec l'association maïs/splm2.

III.1.2.2 Ankazoabo (Andombiry)

	F0	F2	F3	F1
rendement maïs (kg/ha)				
sur couverture splm1	2400	2700	3280	4160
sur couverture splm2	2300	2100	3680	4340
sur couverture dolique	2900	1980	2000	4160
taille du maïs (m)				
sur couverture splm1	2.1	2.49	2.62	2.75
sur couverture splm2	2.2	2.31	2.17	2.64
sur couverture dolique	2.46	2.22	2.32	2.48
rendement légumineuse (kg/ha)				
splm1	520	520	560	480
splm2	430	380	500	460
dolique				
Biomasse (t/ha)				
maïs-splm1	12	12	12.5	13
maïs-splm2	10	11	10	12.5
maïs-dolique				

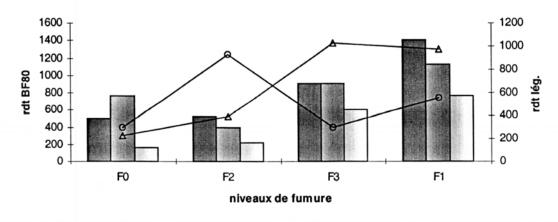

Les rendements du maïs sont excellents alors même qu'il a été semé le 07/01! La qualité du so d'Andombiry (vertisols), à forte réserve utile, a limité les stress hydriques : avec une floraison femelle 70 JAL le maïs a bénéficié de 88 mm de précipitations dans le mois précédent la floraison, et rien après.

La réponse de la fumure est sensible sur le maïs (+67% en F1 et 18% en F3 en moy.) mais n'influe pas sur le rendements des légumineuses.

On ne peut tirer de conclusions quant à la meilleure plante de couverture au vu de ces résultats. Les rendements de splm1 sont légèrement supérieurs (+18%/splm2 en moy.) et les biomasses aériennes produites sont similaires.

III.1.2.3 Sakahara

	F0	F2	F3	F1
rendement maïs (kg/ha)				
sur couverture splm1	720	680	44 0	1600
sur couverture splm2	720	640	840	1120
sur couverture dolique	720	680	880	1280
taille du maïs (m)				
sur couverture splm1	1.62(0.04)	1.42(0.01)	1.42(0.06)	1.68(0.04)
sur couverture splm2	1.65(0.04)	1.55(0.07)	1.54(0.06)	1.7(0.05)
sur couverture dolique	1.45(0.08)	1.5(0.08)	1.77(0.39)	1.69(0.11)
rendement légumineuse (kg/ha)	,			
splm1	560	680	640	700
splm2	260	280	240	320
dolique			-	
Biomasse (t/ha)				
maïs-splm1	13	14	13	21
maïs-splm2	12	12	13	18
maïs-dolique				

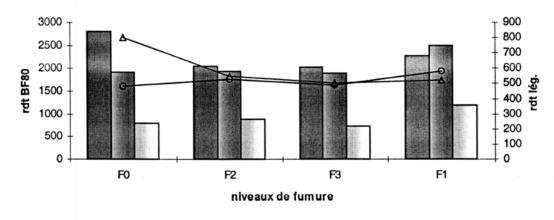

Les rendements du maïs sont plutôt médiocres, la réponse en F1/F0 est supérieur de 85% en moy. La réponse nulle de F2 peut s'expliquer par le lessivage probable (surtout en semis tardif) de l'enrobage des semences.

Comme à Andranovory et Andombiry, les rendements de splm1 sont nettement supérieurs à splm2 (+134% en moy.),on peut penser, vu les dates tardives de semis, que le vigna splm2 de cycle long a dû plus souffrir de stress hydrique, encore que, à Sakahara, on note un net raccourcissement des cycles par rappor aux deux autres sites.

III.1.3 Sorgho BF80 en association avec les légumineuses

III.1.3.1 Andranovory

	F0	F2	F3	F1
rendement BF80 (kg/ha)				
sur couverture splm1	500	520	900	1400
sur couverture splm2	760	400	900	1130
sur couverture dolique	160	220	600	770
taille du BF80 (m)				
sur couverture splm1	1,88(0.24)	2,14(0.11)	1,95(0.21)	2,54(0.1)
sur couverture splm2	2,25(0.1)	1,99(0.14)	2,14(0.08)	2,13(0.14)
sur couverture dolique	1,93(0.12)	2,18(0.08)	2,28(0.07)	2,21(0.08)
rendement légumineuse (kg/ha)				
splm1	230	390	1030	970
splm2	300	930	300	560
dolique				
Biomasse (t/ha)				
BF80-splm1	15	26	25	59
BF80-splm2	18	48	25	60
BF80-dolique				

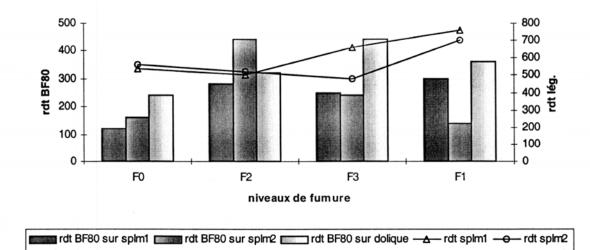

Les rendements du sorgho sont médiocres, mauvais en association avec la dolique et les rendement des légumineuses sont très variables selon les niveaux de fumures.

On obtient des rendements de sorgho supérieurs de 132% en moyenne avec F1 par rapport à F0, or note d'ailleurs la petite taille des sorgho en F0.

En l'absence d'information supplémentaire, les résultats de cette parcelle ne sont pas interprétables.

III.1.3.2 Ankazoabo (Andombiry)

	F0	F2	F3	F1
rendement BF80 (kg/ha)				
sur couverture splm1	2 800	2060	2030	2280
sur couverture splm2	1920	1940	1890	2500
sur couverture dolique	800	880	730	1200
taille du BF80 (m)				
sur couverture splm1	2.85	2.9	2.96	3
sur couverture splm2	2.8	2.69	2.75	3
sur couverture dolique	2.9	2.9	2.95	3
rendement légumineuse (kg/ha)				-
splm1	800	550	500	520
splm2	480	530	490	580
dolique				
Biomasse (t/ha)				
BF80-splm1	12	13	12.5	13
BF80-splm2	11	12	12.5	12.5
BF80-dolique				

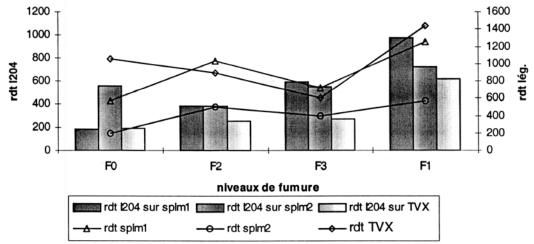


De même que pour le maïs, les rendements sont très bon en dépit de la date de semis très tardive (03/01). L'effet des fumure est noyé, les biomasses et tailles des sorghos sont assez stables.

Les rendements du BF80 sont nettement supérieurs avec les vignas qu'avec la dolique +128% avec splm2 et 154% avec splm1.

III.1.3.3 Sakahara

	F0	F2	F3	F1
rendement BF80 (kg/ha)				
sur couverture splm1	120	280	250	300
sur couverture splm2	160	440	240	140
sur couverture dolique	240	320	440	360
taille du BF80 (m)				
sur couverture splm1	1.5(0.12)	1.6(0.07)	1.54(0.08)	1.5(0.12)
sur couverture splm2	1.52(0.11)	1.64(0.05)	1.68(0.13)	1.71(0.04)
sur couverture dolique	1.56(0.09)	1.54(0.07)	1.57(0.08)	1.74(0.07)
rendement légumineuse (kg/ha)				
splm1	540	500	660	760
splm2	560	520	480	700
dolique				
Biomasse (t/ha)				
BF80-splm1	14	12	11	12
BF80-splm2	14	12	11	12
BF80-dolique				

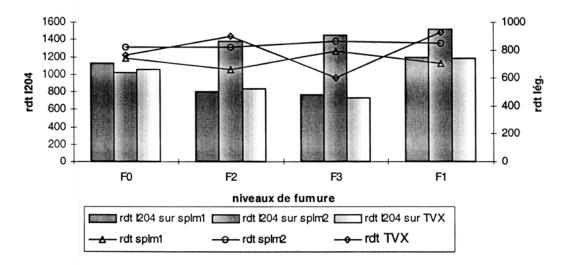

Les rendements de BF80 sont très mauvais et fluctuants suivant les plantes de couverture et niveaux de fumure, de même on note la faible taille des sorghos (1.6 mètre en moyenne). Par contre, les biomasses produites sont toutes de l'ordre de 12 t à l'hectare.

Les rendements des deux vignas sont similaires en F0, F2 et F1, et plutôt satisfaisant.

III.1.4 Sorgho Irat 204 en association avec les légumineuses

III.1.4.1 Andranovory

	F0	F2	F3	F1
rendement I204 (kg/ha)				
sur couverture splm1	180	3 80	590	970
sur couverture splm2	560	3 80	550	720
sur couverture TVX	190	2 50	270	620
taille du I204 (m)				
sur couverture splm1	1,54(0.12)	1,48(0.07)	1,72(0.14)	1,45(0.09)
sur couverture splm2	1,41(0.06)	1,44(0.07)	1,54(0.06)	1,46(0.05)
sur couverture TVX	1,47(0.07)	1,47(0.04)	1,54(0.13)	1,50(0.06)
rendement légumineuse (kg/ha)				
splm1	570	1030	720	1250
splm2	200	500	390	570
TVX	1050	890	600	1440
Biomasse (t/ha)				
I204-splm1	19	49	51	62
I204-splm2	20	23	22	40
I204-TVX	46	57	68	89

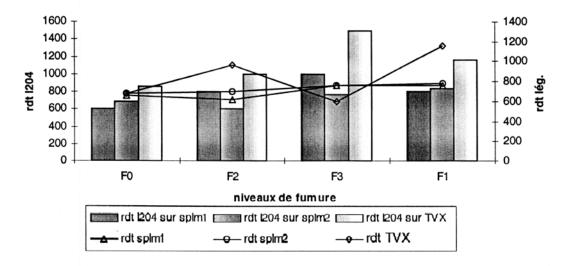


Comme pour le sorgho BF80, les rendements du sorgho I204 sont médiocres, par contre les tiges atteignent dans l'ensemble la hauteur normale de 1m50. L'association avec le vigna TVX n'a pas a donné de moins bons résultats, au point de vue du rendement de la céréales, par rapport aux deux autres vignas, par contre c'est le vigna splm2 qui a le moins rendu.

On note les biomasses (aériennes et souterraines) remarquables avec la plante de couverture TVX : de 46 à 89 t/ha, soit +46% et +147% en moyenne par rapport à splm2 et 1 respectivement

III.1.4.2 Ankazoabo (Andombiry)

	F0	F2	F3	F1
rendement I204 (kg/ha)				
sur couverture splm1	1130	800	770	1190
sur couverture splm2	1020	1380	1450	1520
sur couverture TVX	1050	830	730	1180
taille du I204 (m)				-
sur couverture splm1	1.55	1.44	1.38	1.49
sur couverture splm2	1.48	1.37	1.49	1.55
sur couverture TVX	1.55	1.36	1.36	1.5
rendement légumineuse (kg/ha)		-	
splm1	740	660	790	700
splm2	820	820	860	850
TVX	760	900	600	930
Biomasse (t/ha)				
I204-splm1	12	12	12.5	13
I204-splm2	10	11	10	12
I204-TVX	12	12	12.5	13

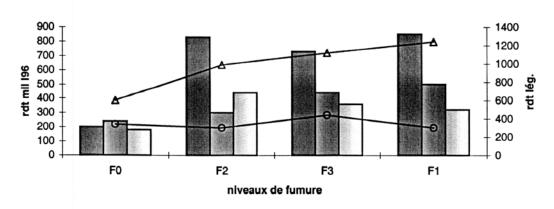


A l'instar du maïs et du sorgho BF80, les rendements du sorgho sont satisfaisants en dépit de la dat de semis tardive (03/01). L'effet fumure est noyé : les rendements des céréales, légumineuses et biomass sont les mêmes quel que soit le niveaux de fumure.

Le sorgho donne ici de meilleurs rendements avec le vigna splm2, environ 40% de mieux par rappor aux deux autres vignas, les biomasses produites sont toutes comparables, d l'ordre de 11-12 t/ha.

III.1.4.3 Sakahara

	F0	F2	F3	F1
rendement I204 (kg/ha)				
sur couverture splm1	600	800	1000	800
sur couverture splm2	680	600	760	840
sur couverture TVX	860	1000	1500	1160
taille du I204 (m)				
sur couverture splm1	1.17(0.03)	1.26(0.04)	1.24(0.05)	1.26(0.04)
sur couverture splm2	1.23(0.03)	1.26(0.06)	1.27(0.04)	1.31(0.07)
sur couverture TVX	1.2(0.03)	1.26(0.05)	1.27(0.02)	1.32(0.03)
rendement légumineuse (kg/ha)				
splm1	660	620	756	760
splm2	680	700	760	780
TVX	680	960	600	1160
Biomasse (t/ha)				
I204-splm1	11	12	11	12
I204-splm2	13	12	10	12
I204-TVX	10	10	10	10


Les rendements du sorghos, à l'inverse de ceux des légumineuses, sont peu satisfaisants, et on note cet égard la faible taille des tiges. L'effet fumure sur les rendements des deux cultures est noyé.

L'association avec le vigna TVX est ici plus profitable au sorgho.

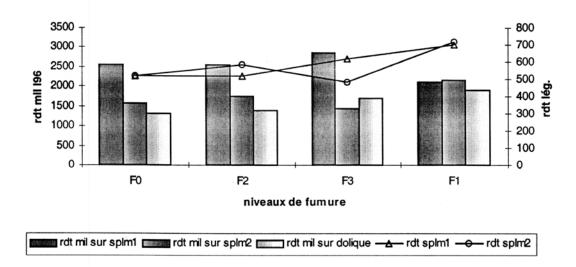
III.1.5 Mil Irat 96 en association avec les légumineuses

III.1.5.1 Andranovory

	F0	F2	F3	F1
rendement mil (kg/ha)				
sur couverture splm1	200	830	730	850
sur couverture splm2	240	300	440	500
sur couverture dolique	180	440	360	320
taille du mil (m)				
sur couverture splm1	2,64(0.18)	2,15(0.03)	2,12(0.27)	2,05(0.13)
sur couverture splm2	2,36(0.13)	2,81(0.15)	2,91(0.2)	3,07(0.14)
sur couverture dolique	2,76(0.07)	2,74(0.25)	3,16(0.19)	2,45(0.31)
rendement légumineuse (kg/ha)				
splm1	600	990	1120	1240
splm2	340	300	440	300
dolique				
Biomasse (t/ha)				
mil-splm1	14	41	33	39
mil-splm2	21	31	25	48
mil-dolique				

rdt mil sur splm1 rdt mil sur splm2 rdt mil sur dolique -- rdt splm1 -- rdt splm2

La date des semis, effectués le 07/01, explique les mauvais rendements et la faible taille du mil. L'association avec le vigna splm1 est beaucoup ici plus intéressante par rapport à splm2 : +76% er rendement mil et +186% en rendement vigna. A noter les biomasses produites sans rapport avec le rendements des associations. III.1.5.2 Ankazoabo (Andomb<u>iry)</u>


	F0	F2	F3	F1
rendement mil (kg/ha)				
sur couverture splm1	1660	2060	1780	2060
sur couverture splm2	1400	1940	2120	2290
sur couverture dolique	1320	1400	1020	2200
taille du mil (m)				
sur couverture splm1	2.67	2.77	2.7	2.8
sur couverture splm2	2.6	2.5	2.95	2.27
sur couverture dolique	2.87	3	3	2.46
rendement légumineuse (kg/ha)		-		
splm1	850	790	690	760
splm2	850	930	900	990
dolique				
Biomasse (t/ha)				
mil-splm1	11	12.5	12	13
mil-splm2	10	12	11	12
mil-dolique				

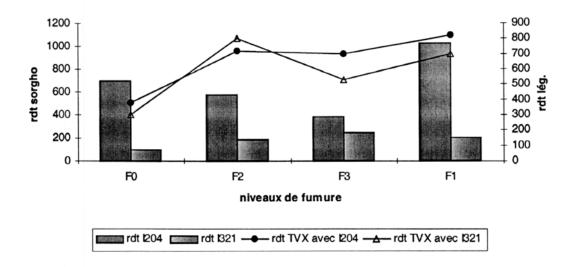
Les rendements du mil et des légumineuses sont très satisfaisants. Les rendements du mil accusen une hausse de 23%, 12% et 50% en F2, F3 et F1 par rapport à F0 respectivement, cet effet n'est pas sensible sur les légumineuse.

Les rendements du mil sont plus élevés lorsqu'il associé aux vigna qu'à la dolique, et les avantage comparatifs de splm1 et splm2 sont mitigés.

III.1.5.3 Sakahara

	F0	F2	F3	F1
rendement mil (kg/ha)				
sur couverture splm1	2560	2560	2 860	2100
sur couverture splm2	1560	1740	1440	2160
sur couverture dolique	1300	1400	1700	1900
taille du mil (m)				
sur couverture splm1	2.64(0.18)	2.15(0.03)	2.12(0.27)	2.05(0.13)
sur couverture splm2	2.36(0.13)	2.81(0.03)	2.91(0.2)	3.07(0.14)
sur couverture dolique	2.76(0.07)	2.74(0.25)	3.16(0.19)	2.45(0.31)
rendement légumineuse (kg/ha)			-	
splm1	520	520	620	700
splm2	520	580	480	720
dolique				
Biomasse (t/ha)				
mil-splm1	31	33	31	34
mil-splm2	31	34	32	36
mil-dolique				

Contrairement aux résultats du mais et des sorghos, les rendements de cette association mil/légumineuses sont très bons !


Le rendement du mil associé à splm1 est plus élevé de 46% et 60 % par rapport aux couverture splm2 et dolique respectivement.

L'effet de la fumure n'est pas sensible.

III.1.6 OP1-2 Cultures associées en semis direct sur résidus parcelles supplémentaires

	date semis	date levée	date maturation	cycle culture
sorgho I204	29/12	04/01	03/04	91
sorgho I321	6	0	16/04	104
TVX avec I204	6	69	15/05	133
TVX avec I321	0	0	15/05	133

	F0	F2	F3	F1
rendement sorgho (kg/ha)				
I204 sur couverture TVX	700	570	380	1030
I321 sur couverture TVX	100	180	240	200
taille du sorgho (m)				
1204	1.64(0.13)	1.43(0.08)	1.58(0.11)	1.65(0.06)
I321	1.36(0.05)	1.44(0.15)	1.29(0.04)	1.28(0.08)
rendement légumineuse (kg/ha)				
TVX avec I204	380	720	700	820
TVX avec I321	300	800	530	700
Biomasse (t/ha)				
I204-TVX	32	22	36	45
I321-TVX	12	14	16	22

Les rendements du mil 1204 sont passables en F0 et F1 et médiocres en F2 et F3. Le sorgho I321 n'a pas bien levé ce qui aggrave les résultats déjà limités par la date de semis tardive.

CONCLUSIONS

Des conclusions plus générales sur les résultats de l'opération 1 seront faites dans le rapport ultérieur avec les résultats économiques des dispositifs et une discussion sur le déroulement de la campagne ainsi que les résultats agronomiques des essais par le chercheur CIRAD en poste à Tulear.

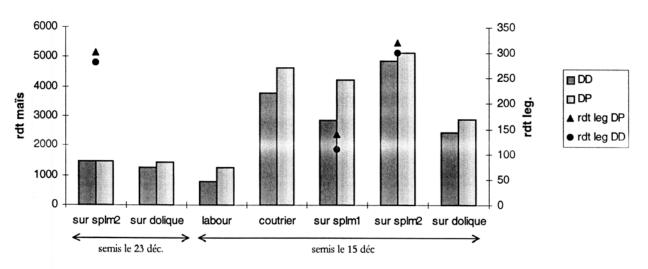
III.2 OP1-3&4: CULTURES ASSOCIEES EN SEMIS DIRECT SUR RESIDUS ROTATION DE DEUX ANS CEREALES/LEGUMINEUSES AVEC DU COTON POUR L'ACTIVITE 4

Les activité 3 et 4 de l'opérations 1 sont mises en place a Andaboro.

Les expérimentations consistent en l'association de céréales associées à des légumineuses, les cultures de céréales étant fixées pour l'acte 3, et en rotation avec des cultures pures de coton dans l'acte 4. Ces cultures sont semés directement dans les résidus de la récolte précédente.

On compare la performance de ces systèmes avec des parcelles témoins de cultures fixées sur labour et coutrier, et paillage pour le coton.

Les associations testées sont les suivantes :

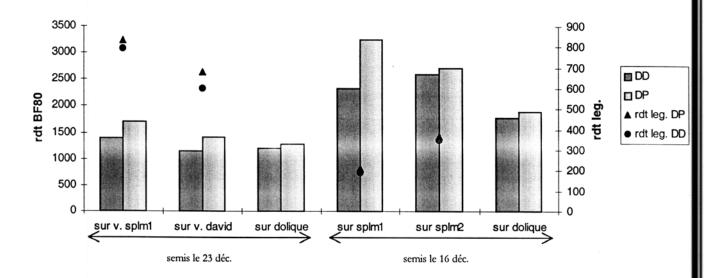

	labour	coutrier	paillage	SD	splm1	splm2	david	u. 596-2	u. 153	be	splf2	dol
Act3												
maïs OC202	x	x				X						X
sorgho BF80					х		x					x
I204					х	х	x	x	x	x		-
mil I96								x				х
mil I31					х							
cult.pure					x					х	х	
Act4												
maïs OC202					x	x						X
sorgho BF80					x	x						xx
mil I31												x
coton	x	x	xx	xxxx								

Les rendements des céréales et légumineuses entre l'acte 3 et 4 ne sont pas comparables à cause d'ur décalage de semis.

	date semis	date levée	date maturation	cycle culture
Acte 3				
Maïs				
- sur splm2	23/12	28/12	06/04	101
& dolique				
- sur labour	15/12	19/12	27/03	100
& coutrier				
Sorgho BF80	21/12	28/12	07/04	102
Sorgho I204	21/12	28/12	15/04	110
Mil I 96	21/12	28/12	28/04	123
Mil I31	23/12	28/12	28/04	123
Acte 4			-	
Maïs	15/12	19/12	27/03	100
Sorgho BF80	16/12	19/12	04/04	108
Mil I31	16/12	19/12	27/04	131
Coton	13/12	17/12	13/05	149

III.2.1 Culture de mais associé aux légumineuses

	rende	ment	rende	rendement		céréales	bion	nasse
	céréales	(kg/ha)	légumi	neuses	(r	n)	(t/	ha)
	DD	DP	DD	DP	DD	DP	DD	DP
Acte 3								
sur labour	800	1250			2.07(0.08)	2.26(0.15)	6	12
sur coutrier	3800	462 0			2.59(0.08)	2.87(0.13)	11	13
couverture splm2	1450	1470	280	300	2.05(0.06)	1.98(0.09)	11	13.5
couverture dolique	1270	1430			1.94(0.19)	1.85(0.1)		
Acte 4						` ,		
couverture splm1	2850	4230	110	140	2.92(0.17)	2.93(0.16)	15	18.5
couverture splm2	4870	5140	300	320	2.98(0.08)	2.87(0.13)	11	13.5
couverture dolique	2470	2890			2.76(0.07)	2.77(0.09)		

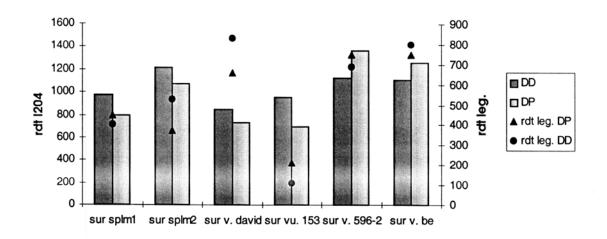

Les décalages de dates de semis et les différences de qualité du sol (cf. annexe 3) rendent difficile le comparaisons des avantages des associations entre elles et avec l'utilisation du labour et coutrier : les forte différences de rendements du maïs sur labour et en association semée le 23 décembre avec les autres essais peuvent s'expliquer par le décalage des dates de semis et le fait que les trois premières parcelles aient un so plus rouge, à teneur en argile plus faible et moins riche en matière organique (cf. annexe 3).

Les rendements de maïs obtenus sont dans leur ensemble très bons, dépassant les 5t/ha er association avec le vigna splm2.

On note la stabilité de rendement du vigna splm2, ainsi que les rendements du maïs/coutrie supérieurs à l'association avec splm1 et la dolique.

III.2.2 Culture de sorgho BF80 associé aux légumineuses

	rende	ment	rende	ement	hauteur	céréales	bion	nasse
	céréales	(kg/ha)	légumi	ineuses	(r	n)	(t/ha)	
	DD	DP	DD	DP	DD	DP	DD	DP
Acte 3								
couverture splm1	1400	1700	780	830	2.76(0.07)	2.75(0.06)	32	35
couverture david	1150	1410	600	680	-	-	22	22
couverture dolique	1200	1280			2.43(0.05)	2.73(0.07)		
Acte 4					, ,	,		
couverture splm1	2330	3250	190	210	3.34(0.06)	3.48(0.04)	15	21
couverture splm2	2610	2720	350	370	3.48(0.03)	3.55(0.04)	27	16
couverture dolique	1770	1885			3.31(0.06)	3.34(0.1)		
	(60)	(265)				. ,		

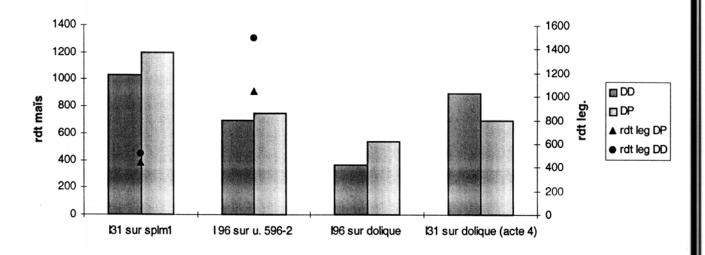

Les rendements du sorgho sont bons à la date de semis du 23/12, très bons à celle du 16/12, et au vu de ce graphique, les légumineuses semblent avoir profité du rendement limité du sorgho.

Le plus le sol des parcelles BF80 sur vigna david et dolique est moins riche que les autres, ce qui, avec le décalage de semis, contribue à expliquer les différences de rendements.

On remarque également les différences de taille d'au moins 50 cm entre les parcelles de l'activité 3 et 4.

III.2.3 Culture de sorgho 1204 associé aux légumineuses

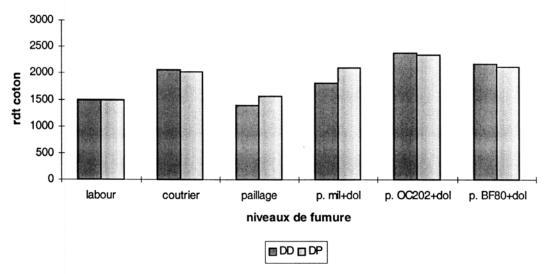
	rendement		rende	ment	hauteur céréales		bion	nasse
	céréales (kg/ha)		légumineuses		(r.	n)	(t/	ha)
	DD	DP	DD	DP	DD	DP	DD	DP
Acte 3								
sur couverture splm1	970	800	400	4 50	1.25(0.06)	1.42(0.05)	21	21
sur couverture splm2	1220	1070	530	3 70	1.46(0.04)	1.23(0.1)	21.5	18.5
sur couverture david	850	730	830	660	1.5(0.04)	1.61(0.08)	19.5	18
sur couverture u. 153	960	700	110	210	1.39(0.08)	1.43(0.05)	25	22
sur couverture u. 596-2	1130	1370	690	750	1.59(0.03)	1.56(0.03)	15	13
sur couverture black eye	1110	1260	800	750	1.47(0.04)	1.42(0.09)	16	20



Les rendements du sorgho I204 sont plutôt moyen pour Andaboro. Les meilleurs rendements de céréales et légumineuses sont obtenus avec le vigna 596-2, black eye, et dans une moindre mesure splm2.

Les faibles rendements du vigna u.153, de cycle court, sont dû à une maturation en saison des pluie ce qui a provoqué une pourriture des gousses.

III.2.4 Culture du mil associé aux légumineuses


	rendement céréales (kg/ha)			ement	hauteur céréales		biomasse	
	cereale	s (kg/ha)	legumi	ineuses	(m)		(t/ha)	
	DD	DP	DD	DP	DD	DP	DD	DP
Acte 3								
I31sur couverture splm1	1030	1200	510	440	2.67(0.17)	3.26(0.18)	22	31
I96 sur couverture u.596-2	700	750	1040	1500		` ,	21.5	26.5
196 sur couverture dolique	370	540						
Acte 4								
I31 sur couverture dolique	900	700			3.52(0.19)	3.05(0.35)		

Les rendements du mil I31 sont moyens, et ceux du mil I96 sont médiocres en raison d'une mauvaisce levée.

III.2.5 Culture de coton

	rendemer	nt (kg/ha)	haute	ur (m)	nb capsules	
	DD	DP	DD	DP	DD	DP
labour	1490	1490	102(8)	111(7)	11.4(3)	9.8(1.7)
coutrier	2060	2020	144(15)	133(5)	17.2(6.8)	16.6(2.3)
paillage	1395(25)	1575(85)	109(8)	114(8)	8.5(1.3)	9.5(1.2)
précédent mil+dolique	1810	2100	109(5)	119(14)	11.2(1.7)	17.4(1.1)
précédent maïs+dolique	2385(318)	2350(156)	132(9)	137(9)	15.7(2.1)	15(1.4)
précédent BF80+dolique	2170	2130	133(3)	137(11)	17.4(2.9)	12(1.5)

Les rendements sont bons dans l'ensemble, à l'avantage du semis direct sur résidus et coutrier.

CONCLUSIONS

Des conclusions plus générales sur les résultats de ces deux activités seront faites dans le rappor ultérieur, avec les résultats économiques des dispositifs et une discussion sur le déroulement de la campagne ainsi que les résultats agronomiques des essais par le chercheur CIRAD.

III.3 OPERATION 2, 3 ET 4: CULTURES PURES

III.3.1 Classification des opérations

L'opération 2 consiste en différentes parcelles de cultures pures (céréales, légumineuses et coton) séparées entre elles par des associations de maïs/ pois de terre/ arachide.

L'opération est divisée en deux actes :

- l'acte 1, sans coton : rotations biennales céréales avec légumineuses
- l'acte 2, avec coton : rotations biennales de coton avec céréales et de coton avec légumineuses

Les rendements de ces cultures pures sont à comparer avec ceux obtenus dans les opérations 3 et 4. En effet, ces opérations consistent en :

- cultures pures conventionnelles sur labour et coutrier (OP3),
- culture en SD sur résidus avec des rotations identiques à l'opération 2 (OP4 acte 1),
- cultures pures traditionnelles sur labour et coutrier (OP4 acte 2).

La distinction entre l'OP2 et l'OP4-1 se justifie dans le fait que l'OP2 est un exemple intéressant et facilement appropriable par les paysans, pour de possibles diversifications culturales (juxtaposition de cultures et d'associations différentes).

Les résultats sont présentés par type de cultures pour les sites d'Andranovory et Ankazoabo. Les opérations 3 et 4 n'étant pas réalisées à Sakahara, on présente donc les résultats relatifs aux cultures pures de céréales et légumineuses dans le même paragraphe.

III.3.2 Association maïs-arachide-pois de terre

Pour chaque thème, il y a cinq parcelles de maïs associé avec le pois de terre et deux variétés d'arachide (3 parcelles avec H33 et 2 avec valencia)(cf schémas des protocoles). Les poquets de maïs son écartés de 1m sur la ligne avec des interlignes de 1m. Les poquets d'arachide sont sur la ligne de maïs, séparés de 20 cm entre eux, les pois de terres sont semés dans l'interligne du maïs, espacés de 50 cm à Andranovory et 30cm à Ankazoabo et Sakahara. Cette différence d'écartement est due à l'insuffisance des semences disponibles. Le tableau ci-dessous donne les moyennes et erreur types des résultats pour l'ensemble des disparcelles.

III.3.2.1 Andranovory

	date semis	date levée	date maturation	cycle culture (jours)
Maïs OC202	07/01	11/01	11/05	122
Arachide H33	07/01	11/01	08/04	89
Arachide Valencia	07/01	11/01	20/04	101
Pois de terre	07/01	11/01	19/04	100

	1	rendement (kg/ha)		r maïs n)	nb gouss e s légumineuses	
	DD	DP	DD	DP	DD	DP
Maïs OC202	819(90)	943(75)	-			
Arachide H33	344(85)	418(64)			6.3(0.5)	7.4(0.6)
Arachide Valencia	314(100)	379(53)			7.2(0.6)	7(0.6)
Pois de Terre	1096(79)	1105(78)			20.4(1.2)	18.8(1.5)

III.3.2.2 Ankazoabo

	date semis	date levée	date maturation	cycle culture (jours)
Maïs OC202	06/01	12/01	13/05	123
Arachides	06/01	12/01	21/04	101
Pois de terre	06/01	17/01	23/04	98

	rendement (kg/ha)			hauteur maïs (m)		nb gousses légumineuses	
	DD	DP	DD	DP	$\mathbf{D}\mathbf{D}$	DP	
Maïs OC202	2794(307)	2920(216)	2.44(0.05)	2.51(0.05)			
Arachide H33	619(91)	614(75)			13.6(0.7)	15.6(0.7)	
Arachide1	637(48)	681(48)			12.6(0.7)	14.1(0.6)	
Pois de Terre	176(15)	193(20)			-	-	

III 3.2.3 Sakahara

	date semis	date levée	date maturation	cycle culture (jours)
Maïs OC202	16/12	23/12	22/03	
Arachide H33	16/12	27/12	03/03	63
Arachide MK	16/12	27/12	10/03	70
Pois de terre	16/12	07/01	26/03	80

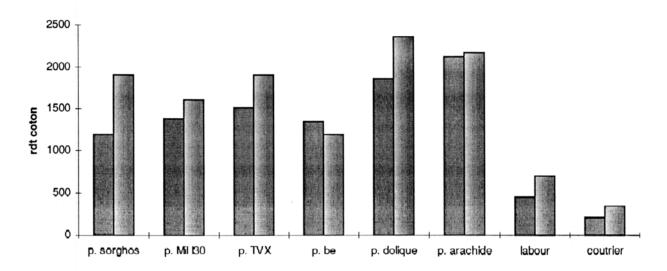
	1	rendement (kg/ha) DD DP		ır maïs n)	nb gousses légumineuses	
	DD			DP	DD	DP
Maïs OC202	1540(57)	1613(106)	1.8(0.1)	1.5(0.1)		
Arachide H33	411(29)	444(80)			12.3(1.0)	11.6(1.0)
Arachide MK	392(9)	500(100)			14(1.1)	12.2(0.6)
Pois de Terre	233(12)	223(22)	l		10.4(0.6)	9.2(0.7)

Les cultures, comme dans l'opération 1, montrent un raccourcissement de leur cycle à Sakahara.

Les rendements de cette association sont dans l'ensemble très bons. Le maïs, semé à 20000 pieds l'hectare a rendu plus d'1.5 à Sakahara et 2.8 tonnes à l'hectare à Andombiry en demi-dose.

Les rendements du mais à Andranovory sont limités par la date de semis très tardive (07/01), ce qu n'a pas été le cas à Andombiry, tout comme les cultures de l'opérations 1, bénéficiant des sables humifères e de leur bonne réserve utile.

Les rendements d'arachide sont de l'ordre de ceux obtenus par les paysans en culture pure san fumure. A noter le rendement du pois de terre à Andranovory (>1t/ha), qui a dû bénéficier du faible développement du maïs.

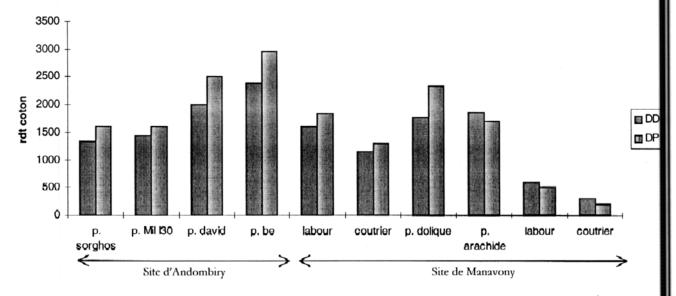

III.3.3 Cultures pures de coton

Il n'y a pas de culture traditionnelle de coton : les protocoles de l'OP3 et 4-2 sont les mêmes et imposés par la société cotonnière.

III.3.3.1 Andranovory

	date semis	date levée	date maturation	cycle culture (jours)
OP2	09/12	15/12	-	
OP3	09/12	15/12	-	
OP4-1	09/12	15/12	-	
OP4-2	09/12	15/12	- ,	

	rendemer	nt (kg/ha)	hauteu	ır (cm)	nb car	osules
	DD	DP	DD	DP	DD	DP
OP2 SD sur résidus						
précédent sorghos	1186	1900	83(8)	89(5)	9.4(0.7)	6.4(0.6)
précédent mil I30	1380	1613	79(3)	95(3)	6.2(0.7)	10(0.9)
précédent TVX	1513	1906	131(10)	124(10)	10.6(1.2)	18.2(2.1)
précédent be Rudin eye	1346	1186	111(4)	132(12)	13.6(1.6)	18.2(2.1)
OP4-1 SD sur résidus						
précédent dolique	1859(50)	2361(75)	122(8)	120(5)	14(1.4)	18.2(1.7)
précédent arachide	2120(139)	2165(102)	143(4)	130(6)	16.1(1.7)	16(1.4)
OP 3& 4-2 techniques conventionnelles						
labour	405(117)	631(135)	86(5)	85(4)	7(0.5)	6.6(0.6)
coutrier	199(28)	339(77)	54(4)	64(3)	3.9(0.3)	4.7(0.4)



L'avantage du semis direct sur résidus apparaît ici clairement sur les rendements : en moyenne supérieur à 1.5t/ha et dépassant les 2t/ha sur précédent arachide en DD, les parcelles en SD ont ur rendement moyen de 3.3 à 3.5 plus élevé que ceux obtenus sur labour et coutrier respectivement.

III.3.3.2 Ankazoabo

	date semis	date levée	date maturation	cycle culture (jours)
OP2	07/01	11/01	13/06	155
OP3	27/12	06/01	31/05	147
OP4-1	27/12	06/01	31/05	147
OP4-2	27/12	06/01	31/05	147

	rendemer	nt (kg/ha)	hauteu	ır (cm)	nb ca	psules
	DD	DP	DD	DP	DD	DP
OP2						
précédent sorghos	1340	1610	111(3)	113(9)	10.6(1.7)	11.4(0.9)
précédent mil I30	1450	1610	118(6)	123(5)	10.2(1.4)	11.4(0.9)
précédent david	2000	2515	126(7)	133(4)	13.6(1.4)	16.2(2.3)
précédent be Sanda eye	2385	2967	117(7)	119(6)	14.8(1.4)	12.2(1.9)
OP3 techniques conventionnelles						
labour	1600(0)	1840(60)	103(5)	110(8)	11.2(0.6)	11.4(0.8)
coutrier	1150(50)	1300(200)	88(4)	103(5)	7.7(0.4)	8.8(0.5)
OP4-1 SD sur résidus						
précédent dolique	1775(175)	2325(75)	119(2)	122(5)	9.9(0.5)	11.5(0.6)
précédent arachide	1855(75)	1703(78)	108(6)	114(3)	7.4(0.7)	8.9(0.7)
OP4-2 techniques conventionnelles						
labour	600	500	76(19)	81(7)	6.8(1.6)	7.6(0.5)
coutrier	300	200	51(5)	65(7)	7.4(0.9)	4.2(0.6)

Les parcelles d'Ankazoabo sont situés sur le site d'Andombiry, à sables roux humifères (OP2) et sur Manavony, à sols sableux, pauvre en matière organique (OP3 & 4). Ainsi, Les performances du SDCV par rapport aux techniques de culture sur sol nu ne peuvent être comparées qu'au sein du site de Manavony Cette comparaison doit toutefois être nuancée, car les parcelles de l'Op4 Act2ont un sol de plus mauvaise qualité (plus forte teneur en sable) que le reste des parcelles de Manavony.

III.3.3.3 Sakahara

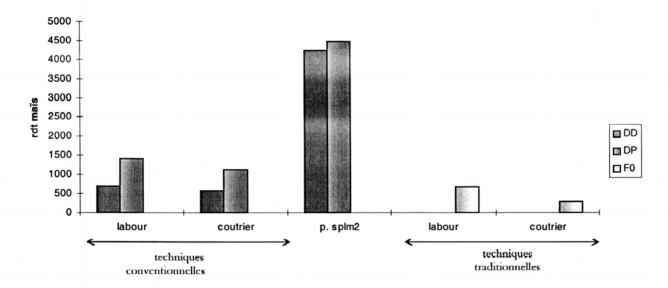
	date semis	date levée	date maturation	cycle culture (jours)
OP2	16/12	27/12	18/04	114

	rendemen	rendement (kg/ha)		ır (cm)	nb capsules	
	DD	DD DP		DP	DD	DP
OP2				-		
précédent sorghos	893	773	81(3)	81(4)	8.4(1.1)	8.8(1.0)
précédent mil I30	880	720	77(6)	75(6)	8(0.7)	6(1.6)
précédent splm2	746	786	72(4)	61(6)	7.4(1.3)	8.8(1.3)
précédent david	800	640	60(6)	67(6)	7.8(0.9)	8.4(1.3)

Les opérations 3 et 4 ne sont pas mises en place à Sakahara, on ne peut donc comparer les avantage du SDCV par rapport aux techniques conventionnelles

Les rendements sont comparables selon les précédents et dans l'ensemble peu satisfaisants, la taille des pieds de coton est faible.

On note par ailleurs le raccourcissement important du cycle du coton.

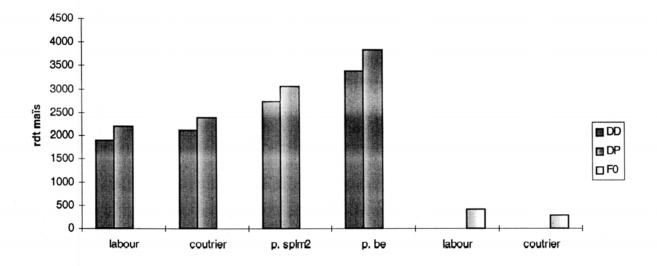

III.3.4 Cultures pures de maïs

En culture traditionnelle, le maïs est semé en ligne à trois grains par poquet, sans démariage, les poquets sont espacés de 40 cm sur la ligne avec une interligne de 1mètre. Il n'y pas d'apport d'intrant.

III.3.4.1 Andranovory

	date semis	date levée	date maturation	cycle culture (jours)
OP3	10/12	15/12	27/03	104
OP4-1	10/12	15/12	08/04	116
OP4-2	08/01	13/01	25/04	104

	rendement (kg/ha)		hauter	ur (m)	biomasse	
	DD	DP	DD	DP	DD	DP
OP3 techniques conventionnelles						
labour	696	1408	2 (0.1)	2.1(0.1)	8.5	9
coutrier	566	1133	1.1 (0.1)	1.2(0.1)	6.5	4.8
OP4-1 SD sur résidus						
précédent splm2	4236	4477	2.54(0.04)	2.59(0.06)	50	42
OP4-2 techniques traditionnelles	F0		F0		F0	
labour	60	56	1.2((0.1)	-	7
coutrier	28	39	1.1((0.1)	4.5	

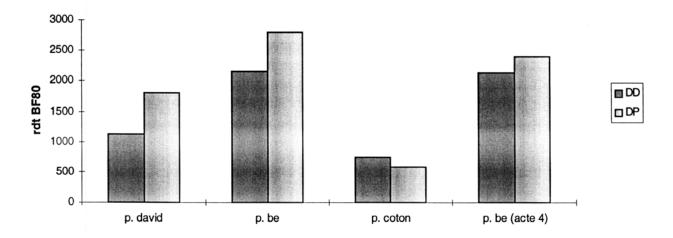

Les rendements du maïs et la biomasse produite en SD sur résidus de vigna sont excellents, 4 et 5 foi plus élevé que les rendements sur labour et coutrier en techniques conventionnelles. Les rendements et techniques traditionnelles sont notamment limités par la date de semis très tardive.

On remarque le cycle plus court du mais par rapport aux opérations 1 et 2 d'Andranovory (123j).

III.3.4.2 Manavony (Ankazoabo)

	date semis	date levée	date maturation	cycle culture (jours)
OP3	30/12	05/01	07/05	124
OP4-1	30/12	05/01	07/05	124
OP4-2	30/12	05/01	07/05	124

	rendement (kg/ha)		haute	ur (m)	biomasse (t/ha)	
	DD	DP	DD	DP	DD	DP
OP3 techniques conventionnelles						
labour	1900	2200	2,22	2,23	11	11
coutrier	2100	2400	2,18	2,2	8	10
OP4-1 SD sur résidus						
précédent splm2	2730	3050	2,62	2,64	12	15
précédent black eye	3370	3830	2,85	2,65	20	13
OP4-2 techniques traditionnelles	F0		F0		F0	
labour	415		1		7	
coutrier	2	85	0.	85	6	

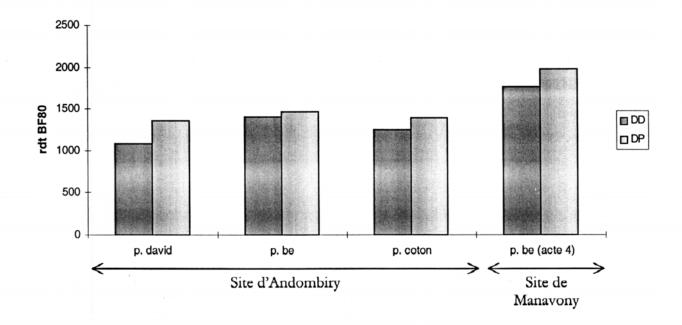


III.3.5 Cultures pures de sorgho BF80

III.3.5.1 Andranovory

	date semis	date levée	date maturation	cycle culture (jours)
OP2	25/12	30/12	20/04	113
OP4-1	10/12	15/12	05/04	113

	rendement (kg/ha)		haute	ur (m)	biomasse	
	DD	DP	DD	DP	DD	DP
OP2						
précédent david	1120	1813	2.46(0.27)	2.48(0.37)	25	35
précédent black eye	2160	2800	3.17(0.11)	3.17(0.1)	28	25
précédent coton	746	586	2.68(0.2)	3.03(0.04)	26	43
OP4-1				•		
précédent be	2136	2409	3.76(0.16)	3.05(0.06)	93.5	80

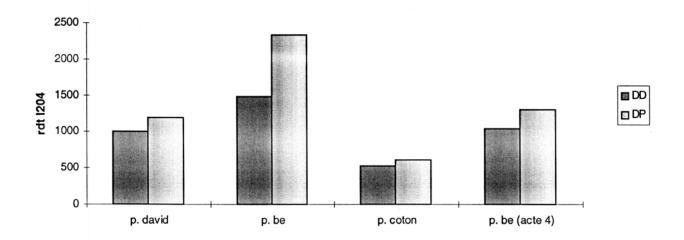


Les rendements obtenus sont dans l'ensemble satisfaisants, hormis la parcelle avec résidus de coton qui de plus a un rendement moins élevé en fumure préconisée qu'en demi-dose.

III.3.5.2 Ankazoabo

	date semis	date levée	date maturation	cycle culture (jours)
OP2	04/01	12/01	21/04	101
OP4-1	28/12	05/01	03/04	90

	rendement (kg/ha)		hauteur (m)		biomasse	
	DD	DP	DD	DP	DD	DP
OP2						
précédent david	1077	1361	2.85	3	11	12.5
précédent black eye	1406	1470	2.95	3	10	11
précédent coton	1250	1393	2.9	3	10	12
OP4-1						
précédent be	1770	1980	-	-	-	-

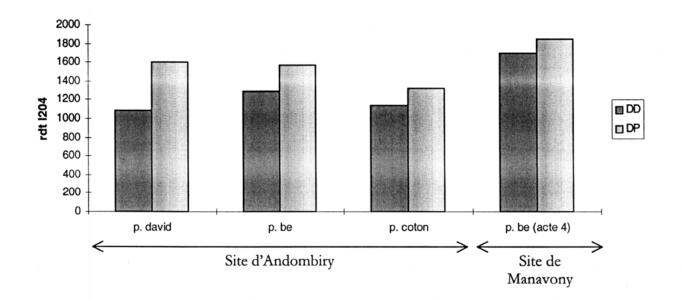


III.3.6 Cultures pures de sorgho 1204

III.3.6.1 Andranovory

	date semis	date levée	date maturation	cycle culture	
				(jours)	
OP2	25/12	30/12	30/03	92	
OP4-1	07/12	11/12	28/02	80	

	rendement (kg/ha)		hauteur (m)		biomasse	
	DD	DP	DD	DP	DD	DP
OP2			,		-	
précédent david	1000	1200	1.61(0.02)	1.61(0.02)	18	24
précédent black eye	1490	2330	1.63(0.03)	1.61(0.03)	10	16
précédent coton	533	613	1.48(0.08)	1.48(0.12)	15	25
OP4-1						
précédent splm2	1045	1308	1.65(0.02)	1.63(0.03)	50	42

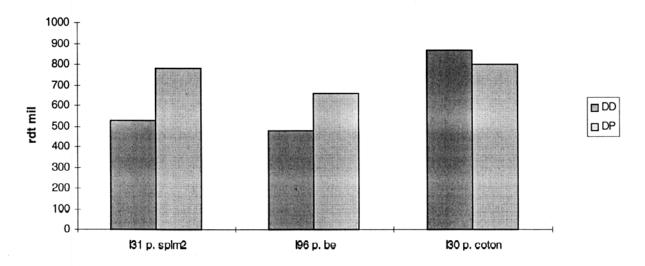


Comme le sorgho BF80, Irat 204 a ici des rendements correct sauf sur précédent coton, où sa taille es d'ailleurs plus faible d'environ un dizaine de centimètres.

III.3.6.2 Ankazoabo

	date semis	date levée	date maturation	cycle culture (jours)
OP2	04/01	12/01	08/04	87
OP4-1	28/12	05/01	03/04	89

	rendement (kg/ha)		hauteur (m)		biomasse	
	DD	DP	DD	DP	DD	DP
OP2				-		
précédent david	1083	1600	1.45	1.65	10	11
précédent black eye	1290	1574	1.34	1.52	8	10
précédent coton	1135	1322	1.47	1.55	7	10
OP4-1						
précédent splm2	1700	1850	-	-	-	-

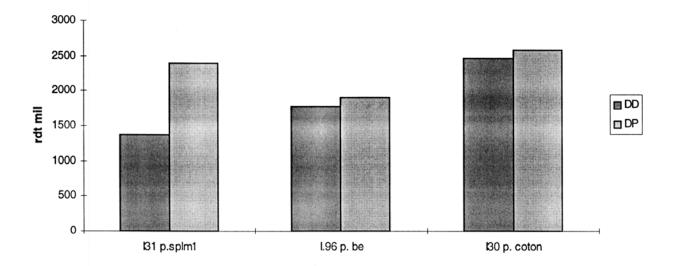

III.3.7 Cultures pures de mil

Cette culture n'est pas testé dans les opérations 3 et 4.

III.3.7.1 Andranovory

	date semis	date levée	date maturation	cycle culture (jours)
mil Irat 31	25/12	30/12	30/04	123
mil Irat 96	15/01	20/01	15/05	122
mil Irat 30	07/01	12/01	5	

	rendement (kg/ha)		hauteur (m)		biomasse	
	DD	DP	DP DD DP		DD	DP
OP2						
I 31 précédent splm2	525	780	2.75(0.19)	2.75(0.05)	28	42
I 96 précédent be	480	660	3.14(0.15)	2.96(0.09)	46	45
I 30 précédent coton	866	800	2.6(0.05)	2.56(0.16)	20	35

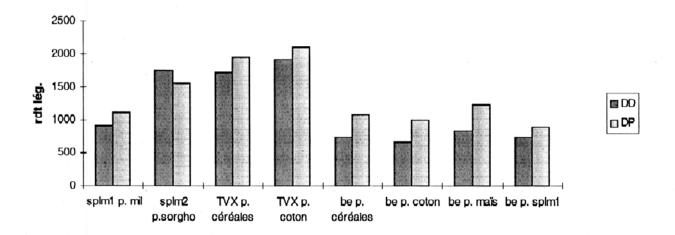


Cet essai est difficile à discuter vu le décalage des dates de semis, les différences variétales et le précédents (vigna rampant, érigé et coton).

III.3.7.2 Ankazoabo

	date semis	date levée	date maturation	cycle culture (jours)
mil Irat 31	04/01	12/01	07/05	117
mil Irat 96	69	6	21/04	101
mil Irat 30	6	•	21/04	101

	rendement (kg/ha)		hauteur (m)		biomasse	
	DD	DP	DD	DP	DD	DP
OP2						
I 31 précédent splm1	1374	2400	2.95	3	8.5	12
I 96 précédent be	1774	1900	2.64	2.9	10	11.5
I 30 précédent coton	2460	2580	2.2	2.3	10	11



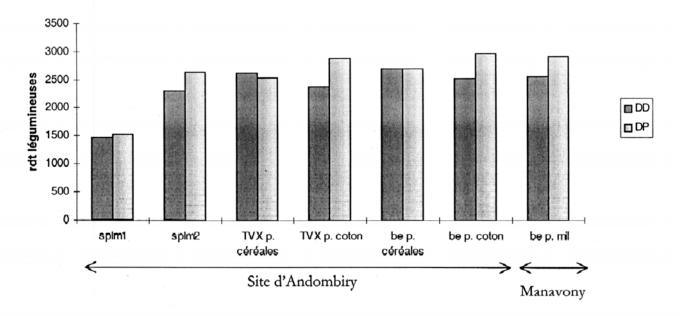
III.3.8 Cultures pures de légumineuses

III.3.8.1 Andranovory

	date semis	date levée	date maturation	cycle culture (jours)
OP2				V
splm1 précédent mil	25/12	30/12	08/04	101
splm2 précédent sorghos	14/15	19/12	29/04	133
TVX précédent céréales	14/12	19/12	20/04	124
TVX précédent coton	07/12	11/12	21/04	133
black eye précédent céréales	14/12	19/12	01/03	74
black eye précédent coton	07/12	11/12	22/02	74
OP4-1	,	•	•	
black eye	7/12	26/12	28/02	65

	rendemer	nt (kg/ha)	biomass	se (t/ha)
	DD	DP	DD	DP
OP2				
splm1 précédent mil	920	1106	26	35
splm2 précédent sorghos	1760	1560	36	48
TVX précédent céréales	1720	1953	10	16
TVX précédent coton	1920	2106	10	15
black eye précédent céréales	746	1086	15	19
black eye précédent coton	666	1000	-	-
OP4-1				
black eye précédent maïs2	840(159)	1240(331)	-	-
black eye précédent splm13	750	904	-	-

Les rendements obtenus sont globalement de deux types : de l'ordre de 1700 tonnes à l'hectare er demi-dose pour splm2 et TVX, et 800 t/ha pour les autres vignas, 900 pour splm1. Ainsi on remarque que variétés à cycle long ont ici mieux rendu que les vignas plus rapides, splm1 ayant un cycle moyen..


² moyennes et erreur type sur deux répétitions

³ cette culture est la seule exception dans les rotations légumineuses/ céréales ou coton

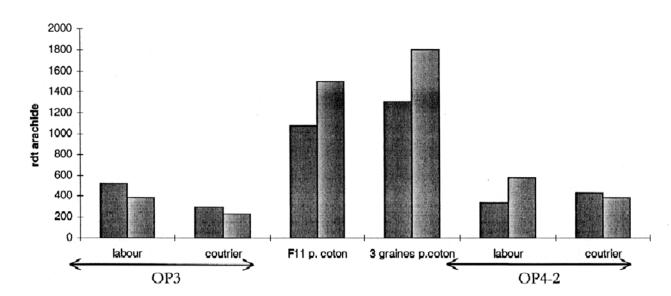
III.3.8.2 Ankazoabo

	date semis	date levée	date maturation	cycle culture (jours)
OP2				
splm1 précédent mil	05/01	12/01	15/04	95
splm2 précédent sorghos	69	69	22/03	71
TVX précédent céréales et coton	69	69	02/04	82
black eye précédent céréales et coton <i>OP4-1</i>	69	69	09/03	58
black eye	29/12	05/01	03/03	59

	rendemen	rendement (kg/ha)		e (t/ha)
	DD	DP	DD	DP
OP2				
splm1 précédent mil	1470	1522	14	18
splm2 précédent sorghos	2300	2645	12	14
TVX précédent céréales	2625	2529	12	14
TVX précédent coton	2374	2883	10	12
black eye précédent céréales	2700	2700	10	11
black eye précédent coton	2522	2967	11	12
OP4-1				
black eye précédent mil4	2560(40)	2905(35)	-	-

Hormis le vigna splm1, les rendements des différentes variétés de vigna sont bons et assez comparables. A noter les rendements stables du vigna black eye sur Andombiry (sols humifères) et Manavony (sols sableux).

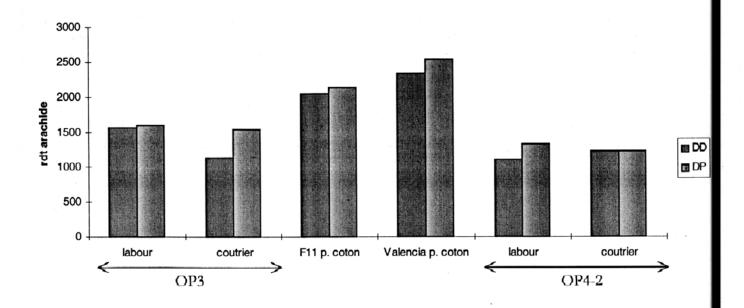
⁴ moyennes et erreur type sur deux répétitions


III.3.9 Cultures pures d'arachide

En techniques traditionnelles, l'arachide est semée à deux grains par poquet. Les densités et niveaux de fumure sont les mêmes dans les différentes opérations.

III.3.9.1 Andranovory

	date semis	date levée	date maturation	cycle culture (jours)
OP3-1				
arachide H33	06/01	10/01	30/03	81
OP4-1 et 2	06/01	10/01	?	


	rendemen	nt (kg/ha)	nb go	usses
	DD	DP	DD	DP
OP3 techniques conventionnelles				-
H33 sur labour	518	388	7.6(0.9)	10.6(1)
H33 sur coutrier	299	226	3(0.4)	5(0.8)
OP4-1 SD sur résidus				
F11 précédent coton	1077	1500	23.4(0.1)	32.8(4.4)
3 graines précédent coton	1309	1800	29.8(4.9)	35.6(5.9)
OP4-2 techniques traditionnelles				
labour	333	575	6.4(1.6)	9.6(2)
coutrier	434	383	4.4(1.2)	6.2(1.3)

III.3.9.2 Ankazoabo

	date semis	date levée	date maturation	cycle culture (jours)
OP3-1 arachide H33 OP4-1	21/12	28/12	21/03	85
Arachide F11 Arachide Valencia	21/12	28/12	22/03	86
OP4-2 Arachide H33	21/12	28/12	21/03	85

		0 /1 \		
	rendeme	nt (kg/ha)	nb go	ousses
	DD	DP	DD	DP
OP3 techniques conventionnelles				
H33 sur labour	1560	1600	21.2(2.7)	33.2(4.3)
H33 sur coutrier	1140	1540	12.4(2)	19.6(1.6)
OP4-1 SD sur résidus				
F11 précédent coton	2040	2130	35.2(6.9)	38(5.2)
Valencia précédent coton	2330	2530	27.6(2.7)	30(1.4)
OP4-2 techniques traditionnelles				
labour	1100	1320	24.8(1.6)	24(1.8)
coutrier	1220	1220	13.2(2.2)	14(3.2)

III.3.10 Cultures pures de céréales et légumineuses à Sakahara

	date semis	date levée	date maturation	cycle culture (jours)
BF80	16/12	21/12	14/03	85
1204	0	6	02/03	73
mil I30	•	•	18/03	89
v. TVX?	17/12	22/12	04/03	75
v. be ?	•	6	26/03	97

	rendement		hav	hauteur		biomasse produite (t/ha)	
	(kg/ka)		(m)				
	DD	DP	DD	DP	DD	DP	
Mil I30	1400	1600	1.99(0.07)	1.98(0.1)	51	50	
BF80	741	771	1.76(0.03)	1.69(0.06)	24	23	
1204	3625	3825	1.25(0.03)	1.27(0.04)	30	31	
v. be?	1240	1240	0.57(0.03)	0.56(0.05)	1.3	1.5	
v. TVX ?	1200	1466		-	2.7	3.5	

L'opération 3 et 4 n'étant pas mises en place à Sakahara, on a regroupé dans le même chapitre les résultats relatifs aux céréales et légumineuse.

Les rendements des céréales sont très disparates : Le sorgho I204 donne des résultats excellents, les rendements du mil I30 sont satisfaisants, et ceux du sorgho BF80 assez médiocres. Les résultats des légumineuses sont quant à eux très corrects.

CONCLUSIONS

Des conclusions plus générales sur les résultats de ces opérations seront faites dans le rapport ultérieur, avec les résultats économiques des dispositifs et une discussion sur le déroulement de la campagne ainsi que les résultats agronomiques des essais par le chercheur CIRAD.

III.4 OP-5 CULTURES ALIMENTAIRES SUR COUVERTURE VIVES

Cette opération est destinée à promouvoir les systèmes de cultures alimentaires sur jachère améliorée. En effet, dans une région où l'élevage occupe une place considérable, il est crucial de concilier les systèmes de semis direct avec l'activité d'élevage, c'est à dire produire une couverture végétale suffisante pour jouer à la fois le rôle de biomasse protectrice et de support fourrager pendant la saison sèche.

III.4.1 Andranovory

	date semis	date levée	date maturation	cycle culture (jours)
Maïs OC202				
précédent Macroptilium	10/01	14/01	13/05	121
avec Bracharia et Mucuna	69	0	-	
BF80	69	6	03/05	111
Mil I30	0	6	09/05	117
Bracharia	1998	- "	-	-
Mucuna	27/01	03/02	-	-

	rendement maïs (kg/ha)			
	F0	F1	F2	
précédent macroptilium			373	
sur Bracharia	-	-	-	
sur Mucuna	-	80	66	

	rendement (kg/ha)			
	sur Bracharia sur Mucun			
Sorgho BF80	276	256		
Mil Irat 30	106	80		

III.4.2 Sakahara

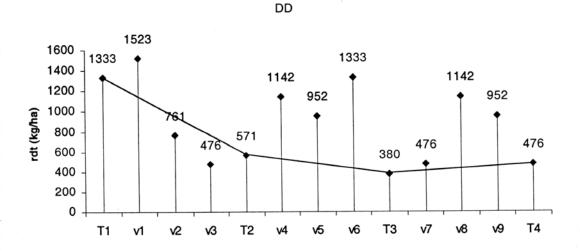
	date semis	date levée	date maturation	cycle culture (jours)
Maïs OC202	16/12	?	?	
Sorgho Is.18306	. ?			
Mil Irat 30	5			
Bracharia				
Mucuna				

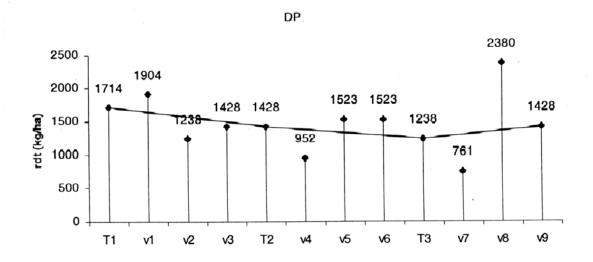
	rendement (kg/ha)	
	sur Bracharia sur Muc	
Maïs OC202	1680	1740
Sorghos Is. 18306	-	-
Mil Irat 30	110	1060

Les rendements du maïs obtenus à Sakahara montrent que de tels systèmes peuvent donner de bons résultats tout en assurant un apport fourrager crucial durant la saison sèche.

La gestion de ces systèmes peut être améliorée : les dates de semis des deux plantes son particulièrement importantes pour limiter la compétition des deux espèces (cf résultats d'Andranovory), or peut également imaginer des cultures alimentaires et fourragères en bandes alternées.

III.5 COLLECTIONS ET MULTIPLICATION DE SEMENCES


III.5.1 Collections de vigna


III.5.1.1 Andranovory

12 anciennes variétés de vignas sont comparées à une variété locale de100j (4 répétitions). Tous les vignas ont été semés le 3 décembre 1999. Chaque vigna est cultivés sur deux parcelles de 50m², une en dose préconisée, l'autre en demi dose.

	nom	cycle	bion	nasse
		,	DD	DP
v1	u. 596-2	100	8	13
v2	u. 25-2	70	11	10
v3	u. 96-1	90	7	12.5
v4	splm2	120	15	18
v5	splm1	100	8	9.5

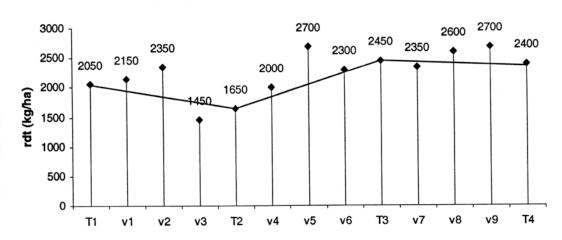
	nom	cycle	bion	nasse
		·	DD	DP
v6	splf1	135	6.5	21.5
v7	u. 153	82	10	12
v8	david	82	9	9.5
v 9	u. 46-2	82	6.5	10

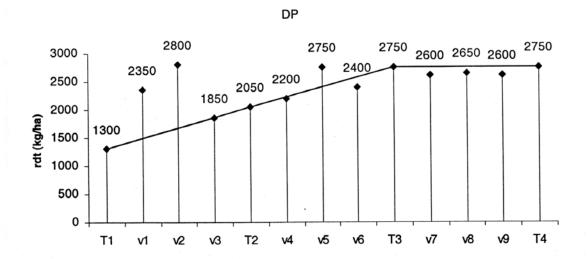
De nouvelles introduction de vignas ont été mises en place cette campagne sur des parcelles de 10.5 m². Les valeurs des biomasses sont manquantes

	r dt	cycle
CNC 664.79G	1333	95
CNC 664.125G	1809	69
CNC 664.86G	1523	6
CNC 870.7 E	1904	O
CNC 796.9 E	952	120
CNC 865.7 E	1714	69
CNC 865.4 E	2476	0
CNC 870.10 E	1904	O
CNC 870.15 E	952	69
CNC 792.9	1428	69
Serido	952	69
CNC 865.10 E	666	69
CNC 792.17 E	1142	69
CNC 796.10 E	1428	69
CNC 868.8 E	857	69

	rdt	cycle
Pitiuba	761	120
CNC 788.10 E	1714	63
CNC 870.1 E	1333	67
CNC 873.1 E	1142	()
IPA 202	1523	()
CNC 788.1 E	1904	
CNC 800.12 E	1714	6
CNC 808.7 e	1428	0
IT. 82.D.812	1142	69
EMAPA 822	952	0
CNC 0434	1523	69
Guagueia BR 17	1142	69
CNC 868.9 E	1428	0
CNC 870.6 E	952	0

III.5.1.2 Ankazoabo

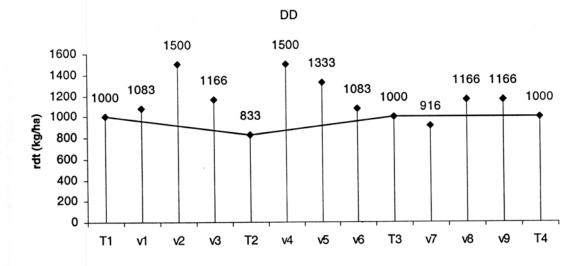

9 variétés de vigna ont été testés par rapport à un témoin local de 92 jours. Les valeurs des biomasses sont manquantes. Tous les vignas ont été semés le 06/01.

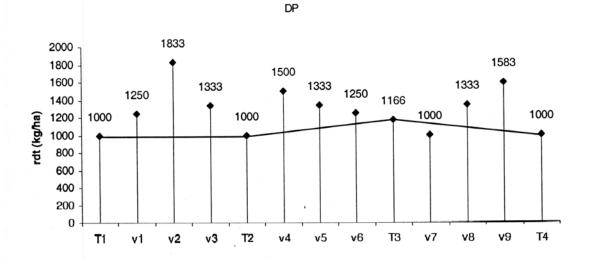

	nom	cycle
v1	splm1	105
v2	splm2	70
v3	splf2	95

	nom	cycle
v3	u. 25-2	65
v4	u. 46-2	60
v5	david	70

	nom	cycle
v 6	u. 96-1	90
v 7	u. 596-2	90
v 8	u. 153	90

DD

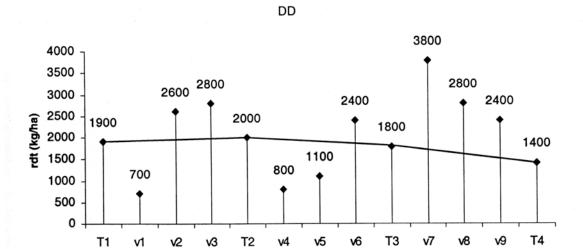

III.5.1.3 Sakahara


Tous les vignas ont été semés le 07/01/2000. Le témoin local fait 75 jours. Les valeurs des biomasses sont manquantes.

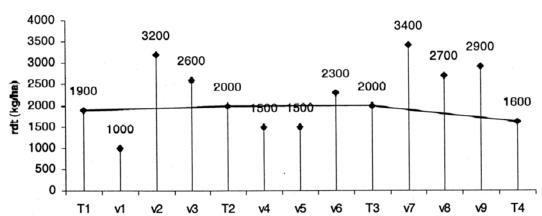
	nom	cycle
v1	david	70
v2	u-46-2	70
v3	u-153	60

	nom	cycle
v3	u-252	75
v4	splm1	75
v5	u-596-2	75

	nom	cycle
v6	splm2	85
v7	splf2	85
v8	u-96-1	75

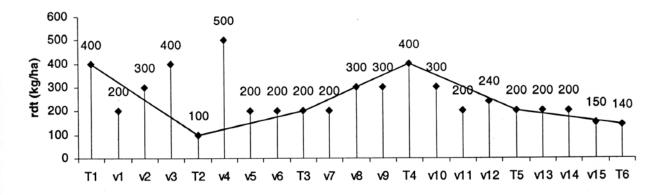

III.5.1.4 Andaboro

Tous les vignas ont été semés le 27/12/2000. Le temoin local fait 95 jours

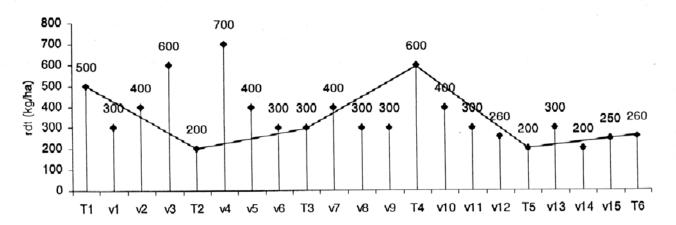

	nom	cycle
v1	splf1	105
v2	u. 96-1	95
v3	u. 596-2	95

	nom	cycle
v4	u. 153	100
v5	splm1	110
v6	u. 46-2	100

	nom	cycle
v7	u. 25-2	100
v8	david	100
v9	splm2	97


III.5.2 Collections de mil

III.5.2.1 Andranovory


15 variétés de mil sont comparés à un témoin local de 118 jours. Tous les mil sont semés le 08/01, on donne les moyennes des hauteurs et erreur type sur 5 relevés, les biomasses sont manquantes.

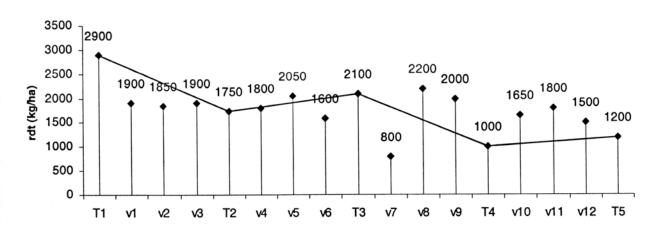
	nom	cycle (j)	haute	eur
		, ,,	DD	DP
v1	Boboni	109	2.19(0,13)	2.34(0,09)
v2	MHVBC	109	2.33(0,15)	2.42(0,18)
v3	ICMV 221	109	2.72(0,14)	2.46(0,20)
v4	Pool Melhores	118	2.58(0,22)	2.51(0,15)
v5	EXD 2	109	2.93(0,08)	2.97(0,05)
v6	ICTP 8203	118	2.26(0,12)	2.48(0,05)
v7	IP5131	118	2.38(0,13)	2.44(0,19)
v8	D2C	109	1.97(0,02)	1.97(0,02)
v9	IP 4852	109	2.45(0,09)	2.56(0,14)
v10	IP 6133	118	2.29(0,11)	2.24(0,10)
v11	IP 6465	118	1.81(0,08)	1.97(0,07)
v12	IP 5721	118	2.64(0,11)	2.56(0,16)
v13	IP 5693	109	2.51(0,20)	2.68(0,14)
v14	ICMV ISS. 88102	109	2.17(0,10)	2.44(0,12)
v15	ESCR II	109	1.98(0,07)	1.92(0,15)

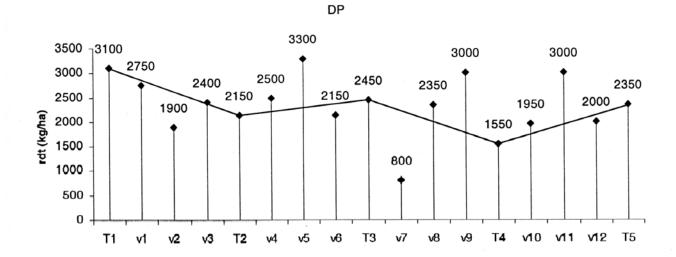
DD

DΡ

III.5.2.2 Ankazoabo

Les variétés de mil sont semées le 31/12, et comparées avec une variété variété locale de 115j.


	nom	cycle
v1	Irat 17	114
v2	Irat 27	65
v3	Irat 30	11 0

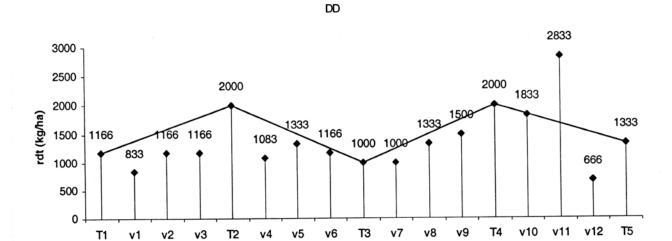

	nom	cycle
v3	Irat 31	115
v4	Irat 96	110
v5	ICVM 221	110

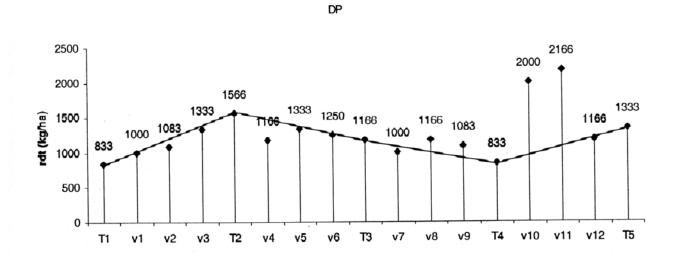
	nom	cycle
v7	IP 6133	65
v8	ICTP 203	110
v9	IP 5693	115

	nom	cycle
v 10	IP5721	110
v11	EXD 2	115
v 12	MHVBC	110

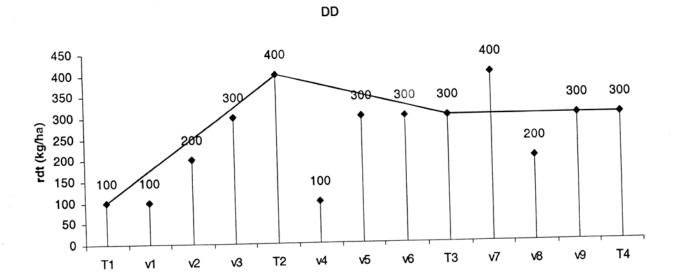
DD

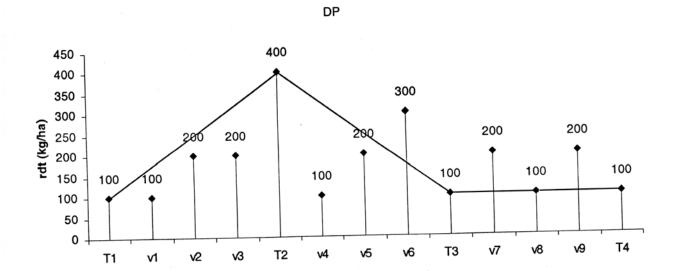
III.5.2.3 Sakahara


Les variétés de mils sont semées le 16/12, et comparées à une variété locale de 115j


	nom	cycle
v1	EXD2	95
v2	IP5721	100
v3	ICTP 8203	110

	nom	cycle
v4	ICVM 221	100
v5	IP 5693	105
v6	MHVBC	100


	nom	cycle
v7	IP 6133	100
v8	ICVM 1588	100
v9	Boboni	95


	nom	cycle
v10	Irat 17	90
v11	Irat 27	110
v12	Irat 31	110

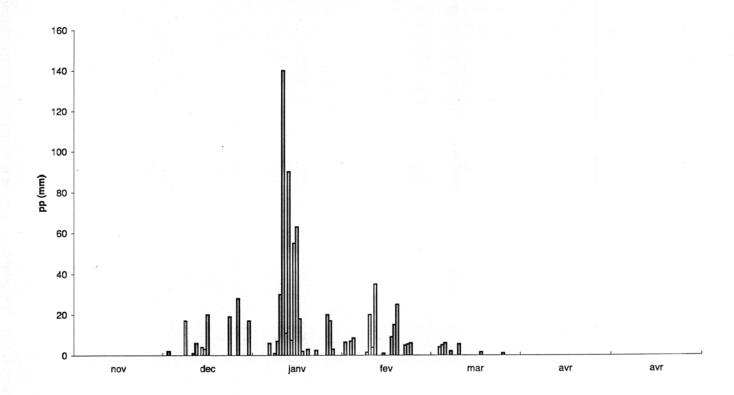
v1 v2 v3	Irat 206 Is 14306 CSR 18306	v4 v5 v6	CSR 5440 CSR 660 CSR 335	v8 v9	Irat 207 Is. 82.3.30
----------------	-----------------------------------	----------------	--------------------------------	----------	----------------------

LISTE DES ANNEXES

Annexe 1 : Principales caractéristiques des sites de références	I
Annexe 2 : Pluviométrie à Ankazoabo, Andaboro et Sakahara	п
Annexe 3 : Plan des protocoles	VII
Annexe 4 · Fiches techniques	XXII

Zones	Sols et climat	Cultures
Andranovory	Sols ferralitiques argilo-sableux	Culture coton sur billon
	battance, perte de stucture, prise en masse, décapage.	Maïs et arachide sur labour, présence de Striga dans
	Pluviométrie moyenne : 700mm	cultures de maïs
		manioc, papaye
Andombiry	Sables roux humifères,	Culture de coton, maïs et arachide sur défriche
(site d'Ankazabo)	La forte intensité des pluies provoque des excès	
	momentanée d'eau	
	Pluviométrie moyenne : 800mm	
Manavony	Sols sableux, pauvre en matière organique	Culture de coton, maïs et arachide sur labour
(site d'Ankazabo)	minéralisation rapide	
	perte des éléments minéraux par lixiviation	
Sakahara	Sols semblables à Manavony	Culture de maïs sur défriche-brûlis
	pluviométrie moyenne 800mm	Patate douce, taro, manioc, papaye
		Agriculture itinérante, zone de migration et
		concentration d'une population cosmopolite
Andaboro	vertisols	zone de migration,
	battance, perte de structure, compaction et prise en masse	coton, maïs, arachide, vigna et manioc sur labour
	La forte intensité des pluies provoque des excès	Présence de striga
	momentanée d'eau	
	pluviométrie de 800 à 1000mm	

EITEE: ANKAZDA BO

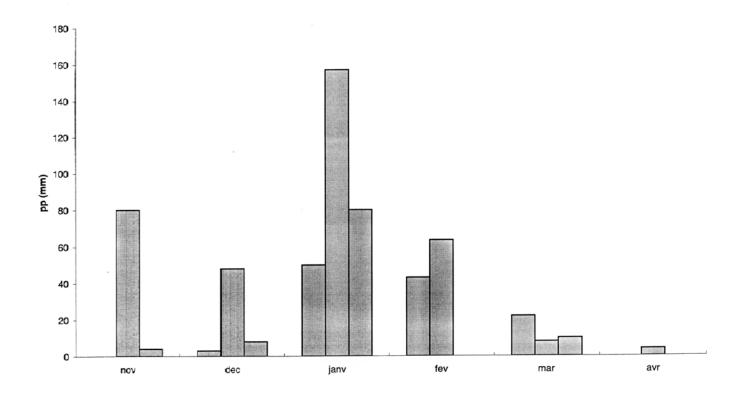

(nanavony)

PLUVIOMETRIE:

. ANNEE: 99.00

MCIS :	COT	NOV	: 020	JAN	FEV I	MAE :	AV.5	MAI	JUIN	:JUIL.	: ACUT	SEF
DATES :		,	!					5	:	: "		:
1					6.5			:	:		:	
Ξ.			02					:	!			
3 :				-	07	4		'			!	
4 !	· · · · ·	!		!	!	5_		!			!	
5 :		!	!		08.5	_6			!		!	
6 !		!		6					·	-		
7 !		!		!		2		!		. !	·	-
9 :		!	17	. 1	!			!	.!			
		:	:	' }	1.5				.'	.!	·	
10 1			'	30	20	<i>5</i> .5	!		,	:	:	!
TOT:1è decade!		:	: 19	: 44	43.5	22.5	!	:	:	!	!	!
			: 01	: 140	4							
12		;	06	140	35		;	-;	-;	-;	·;	-;
13 :		,	100	90	32		,	·;	- ;	-	;	-;
14 !		;	04	7.5				;	-;	-;	-;	
15 1		·	03	55	01		1				-	-
:								- ;	-		- ;	- ,
		!	20	63		- K	, 		-:	-	- '	
		-		18	01	1.5	;	-;	-	-;	-;	- ;
19 1		;	- ;		15	1.5	;	-;	-;	-;	-;	-;
20 :		·	-;	3			·	- ;	- 		-;	-;
				·	25	· 			_;	-!		
TOT:2è decade		:	34	389.5	8 9	1.5	:			!	:	1
21 :		!	!	!		!	:	!,	.:	:	!	
22									-:		-	,
23				2.5	! 5		,			-;		
24		:	119		5.5				-;		-;	-;
25		1			6		1		-;	-	- ;	
24		:				01			-;	-:	-;	-;
27		-	28	20			,				- ;	-,
29		1	!	: 17	!			;	-;	-;		-;
29 29			· · · · · · ·	03		-	;	~ ,	-;		-;	-;
30		:						!	-:		-	-;
3;			17				:		-;- <u>-</u> -		-	-:
fOT:3è decade		!			16.5	01	1	1	!	:	!	!
Tot du mois		!	: 117	476	149	: 25	· · · · ·	· ·	:		;	;
Nore de jours	· · · · · · · · · · · · · · · · · · ·											
de pluies		:	10	; 17	14	; 7	਼	;	;	;	;	1
											1	1
CUMUL	:	!	117	593	742	767		!		;	!	!
		-		• • •	,	7-7						

SITES: ANDA BORO- PLUMIOMETETE


ANNEE: 99.00

			; 40, 00 40 00 00 00 00									
1 970% 1	OCT.	1000	DEC	JANE :	FEV	мЧЕ	AUG	HA!	min.	JUIL.	: AOUT	SEPT
PATES !			1	!	!	,			!	1		,
: : :			!	18	:				:	•		
: a :			6	25	17	29	!			;	,	·
?			!	12			:	1		!		!
1 4 1			!	!	16		:	!)	!	!	
: :				: 3	!	20			!	!	!	
ė :		1701 street alternation as		6	: 25	!	1 10		•	!	!	
, "			!	9	:	20	1	!	!	!	!	!
1 8:			!	!	!	8	!	:	•	!	!	;
		CONTRACTOR NOT THE		5	33			:	,	;	!	!
10 1			1113	15	:	:	:		2	!	:	!
!TOT:lè decade!	;	0	119	93	: 91	77	10		!	:	!	!
1 11 1			6.5	: 49	;	!	!	!	·		,	
18 1		!	7.8	20	18	*				-		
: 13 :			38	10		20						
14 :			!				: .:-					· ; · · · · · · · · · · · · · · · · · ·
1.				:		•	!					·
16 1	Self-tracket and the self-tracket		32	: 28	.:	: 6	1	1	1	:	!	•
1			;	100	20	!	1	1	1	1		:
19 1		-	: 20	: 49			;	;	!	:	;	;
10 1		reference processing and	!	!	!	!	:		!		!	!
		0	!	i .	10	:		!	!	•		:
:TOT:Sé decade:		0	174.5	256	61	26	! -				!;	
1 . e1 :			,	. uD		1	,	t				
t as t	7 17 to 10 t	20	!	!			,	,	1	;		• • • • • • • • • • • • • • • • • • • •
27 :		7.5	1	!	d	•	•	,	1			
d 24 1		4.5	. 25	20	1			:			:	
7 25 3			1	!	60		!	!				
? ?				: 10	10		1			:	! .	
5		\$5.5	:				!	!	•		1	;
29 1			f	1		!	1	:	!			1
ge !			1		1		1		1	1		
30 ;	الرجيد ساس		ţ.,	10			!		1	!	1	1
31 4				!	,	· ·	!	!	!	1	1	!
(TOT:3é decade)	!	87.5	: 25	: 80	170	: 0	: -	!	t	!	·	!
!Tot du mois !					222				!	1	· · · · · · · · · · · · · · · · · · ·	:
INbre de jours!							~~~~			!		
h de pluies /					10			•		i	!	:
्रामस्यः ः		87.5	406	835	1027	1160	1170.	!	!			

avr mar fev janv dec <u>10</u> 120 J ြ (ພພ) dd 100 80 20 -40

Pluviométrie journalière à Andaboro

Pluviométrie décadaire à Sakahara

Convention TAFA / PSO - MdP

O.N.G. « TAFA »

TAny sy FAmpandrosoana
BP 252
Tél 94 413 40
601 – TULEAR

SCHEMAS DES DISPOSITIFS

Campagne 1999 - 2000

Lot 1118 P 220 Miaramasoandro Face HIPPODROME 110 - ANTSIRABE OP1 Act 1 CULTURES ALIMENTAIRES ASSOCIEES AUX PLANTES DE COUVERTURES S.D. O.N.G. "TAFA" - Toliara

	vigna spLM2	vigna spLM2	vigna spLM2	vigna spLM2
				F0
				F1
				F2
			·	F3
	vigna spLM1	vigna spLM1	vigna spLM1	vigna spLM1
73 m				F1
/3 III				F2
				F3
	Dolique	Dolique	Vigna FOFIFA	Dolique F0
				F1
				F2
****	OC 202	BF 80	Irat 204	Mil 196
		43	3 m	

Parcelle élémentaire

 $5 \text{ m} 10 \text{ m} = 50 \text{ m}^2$

Surface totale

3139 m² (43 ml x 73 ml)

Surface utile

2400 m²

Surfacedes allées

739 m²

LOCALISATION: ANKAZOABO - ANDRANOVORY - SAKARAHA

OP 1 Act 3

CULTURES ALIMENTAIRES ASSOCIEES

SEMIS DIRECT SUR RESIDUS

MT	v. splf2	Mil I 31	OC 202	OC 202	BF 80	l 204	l 204	l 204 DI
lab.T	cult. pure	dolique	splm2	dolique	dolique	black eye	david	u. 596-2
MT	v. splf2	Mil I 31	OC 202	OC 202	BF 80	l 204	l 204	I 204 DI
(ab.T	cult. pure	dolique	splm2	dolique	dolique	black eye	david	u. 596-2
BF 80	l 204	I 204	I 204	BF 80	splm1	Mil I 96	Mil 196	black eye DI cult. pure
david	splm2	splm1	u. 153	splm1	cult. pure	dolique	u. 596-2	

Parcelle élémentaire : Surface totale :

100 m²

4312 m² 3600 m²

Surface utile : Surface des allées :

712 m²

DP : dose préconisée DD : demi dose

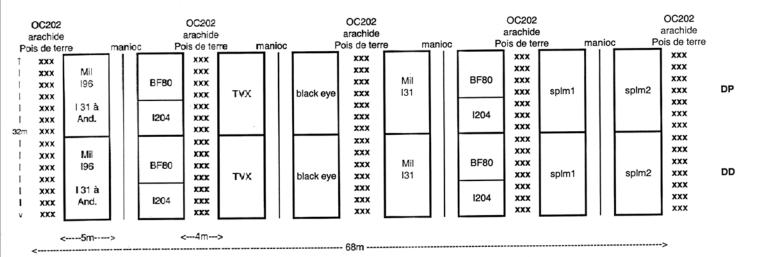
LOCALISATION: ANDABORO

campagne 199-2000 **COTON ET OP 1** Act 4 **CULTURES ALIMENTAIRES ASSOCIEES SUR RESIDUS** î DP Mil 131 BF80 BF80 OC 202 coton splf2 coton coton coton labour dolique dolique SD SD dolique dolique coutrier cult. pure 1 BF80 BF80 OC 202 DD splf2 coton Mil 131 coton coton coton labour dolique dolique SD SD dolique dolique coutrier cult. pure 44m DP coton BF80 BF80 OC 202 OC 202 BF80 coton OC 202 coton splm2 paillage paillage splm1 splm1 splm2 dolique SD coutrier DD coton BF80 BF80 OC 202 OC 202 BF80 coton OC 202 coton paillage splm1 splm2 splm1 splm2 dolique SD coutrier paillage 1 v 98 m Parcelle élémentaire 100 m² DP : dose préconisée 4312 m² DD : demi dose Surface totale

LOCALISATION: ANDABORO

3600 m²

712 m²


Surface utile Surface des allées

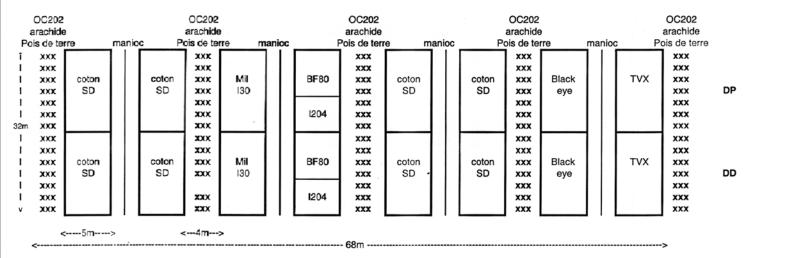
×

OP 2 Act1 Th. 1

DIVERSIFICATION ET ASSOCIATION DE CULTURES

ALIMENTAIRES

Parcelle élémentaire : 5m X 32m = 160m² Surface totale : 60m X 32m = 1920m²


Surface utile : 1664m² Surface des allées : 256m² DP : dose préconisée DD : demi dose

LOCALISATION: ANDRANOVORY-ANKAZOABO

OP 2 Act1 Th. 2

DIVERSIFICATION ET ASSOCIATION DE CULTURES

ALIMENTAIRES ET COTON

Parcelle élémentaire : $5m \times 32m = 160m^2$ Surface totale : $60m \times 32m = 1920m^2$

Surface utile : 1664m² Surface des allées : 256m² DP : dose préconisée DD : demi dose

LOCALISATION: ANDRANOVORY-ANKAZOABO-SAKAHARA

ASSOCIATION Céréale - Légumineuse

Espèces envisageables:

Céréales :

- Maïs
- Sorgho B. F. 80
- Sorgho Irat 204
- Mil

Légumineuses:

- Vigna sp L M1
- Dolichos Lab Lab

Description de la plante :

Nom scientifique:

- Vigna sp L M1 (Lojy)
- Dolichos Lab Lab (Antake)

Caractéristique:

Légumineuse herbacée à fort développement végétatif et port rampant (dolichos peut grimper aux arbres), exclusivement annuelle . Ses feuillages larges et son développement rapide, leur permet de concurrencer les mauvaises herbes.

Ces deux espèces sont bien appétées par les animaux d'élevage en vert comme sous forme de fourrage.

Son feuillage se dessèche totalement à maturité (en Mai, Juin pour le vigna et en Août - Septembre pour la dolique) constituant un mulch très épais mais facilement inflammable.

La récolte des semences est très facile, mais les gousses deviennent déhiscentes si l'on tarde trop à récolter. Si les plants sont bien entretenus et se développent bien, son système racinaire va enrichir le sol, le mulch de feuilles et de tiges da protéger le sol et aussi le nourrir, enfin l'enherbement l'année suivante va être considérablement réduit.

Objectifs:

Proposer aux paysans:

- Souhaitant améliorer la fertilité de leur sol
- Ayant l'habitude de faire la monoculture du mars, et ou la monoculture du vigna
- etc ...

Atouts:

- Si la levée est bonne et si les sarclages sont réalisés à temps, cette technique d'implantation donne de bons résultats
- Si les résidus ne sont pas récoltés pour le fourrage, les plantes vont se dessécher et couvrir du sol. Une partie de cette biomasse va être consommée par les microrganismes avant la saison ce qui enrichi le sol. Le restant du mulch s'il n'est pas brûlé, va pourrir avec les premières pluies de l'année suivante. Le sol s'enrichit en matière organique et en éléments minéraux, surtout en Azote car les feuilles et les tiges (comme pour toute légumineuse) en contiennent beaucoup.
- Réduction importante des coûts de travaux, car le labour et les entretiens sont communs au ma's et à la légumineuse

Contraintes:

- Moyennant efficace si la quantité de biomasse produite est faible (densité non respectée) et si elle est détruite par le feu ou les animaux
- Une protection insecticide minimale s'avère indispensable afin d'assurer une production de graine .
- La parcelle devra être clôturée pour empêcher le passage du bétail, cette barrière constituée de mil ou de banagrass peut servir de biomasse d'appoint pour pailler les parcelles de culture.

Mise en place:

Préparation du sol

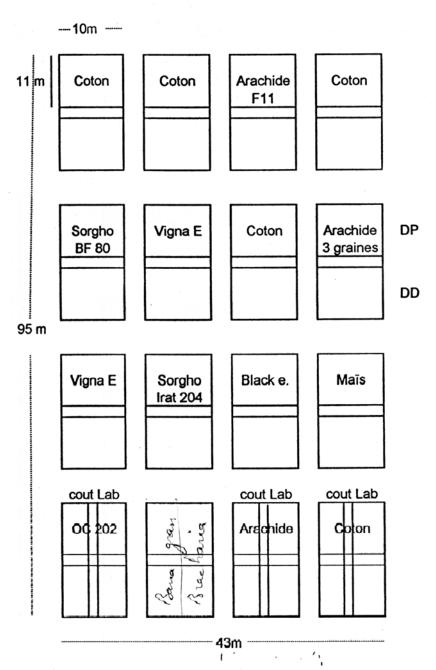
La parcelle doit être labourée avec soin afin de semer sur sol propre

Traitement de semences

Le traitement de semences est obligatoire : réalisez de préférence un mélange fongicide - Insecticide Carbosulfan (4g par Kilo de semence)
Thirame (2g par Kilo de semance)

Densité de semis

Prévoir:


Maïs associé au vigna spl M1
 Maïs 25 Kg de semence pour un ha
 Vigna 40 Kg de semencepour u ha

Convention CROS/TAFA

OP4 Act1 Act2

SYSTEMES CONTINUS **AVEC ROTATION TRIENNALE** comparés

TECHNIQUES CONVENTIONNELLES

Arachide

Précédent Coton

Coton

Précédent arachide - Dolique

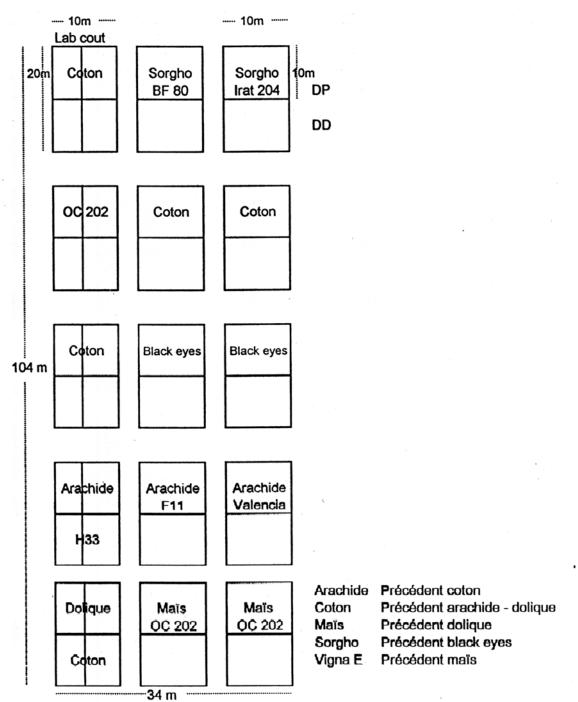
Maïs Sorgho Précédent Dolique

Précédent Black eyes

Vigna E.

Précédent Maïs

Surface: 40,85 ares

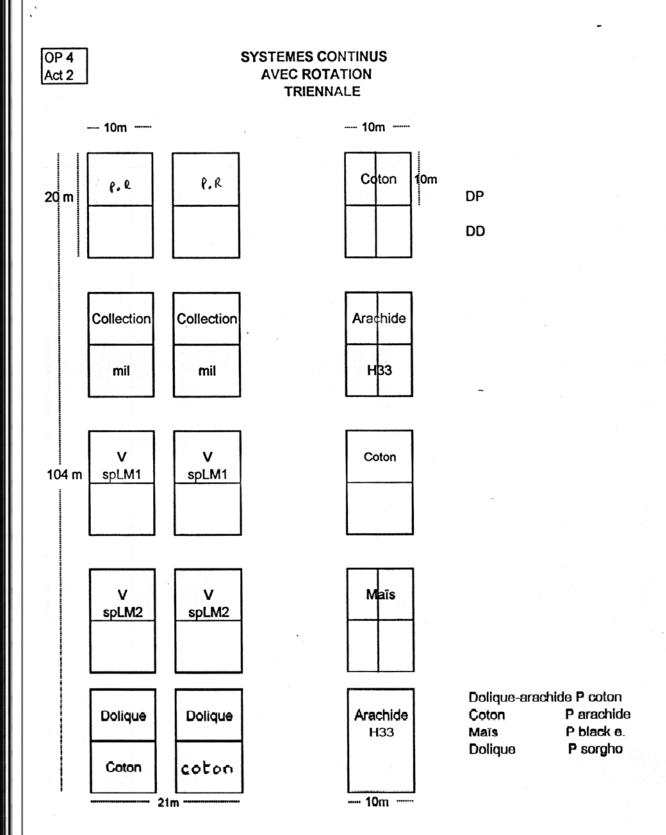

LOCALISATION: ANDRANOVORY

O.N.G. "TAFA" - Toliara

OP3 Act1 OP4 Act1

SYSTEMES CONTINUS AVEC ROTATION TRIENNALE comparés

TECHNIQUES CONVENTIONNELLES

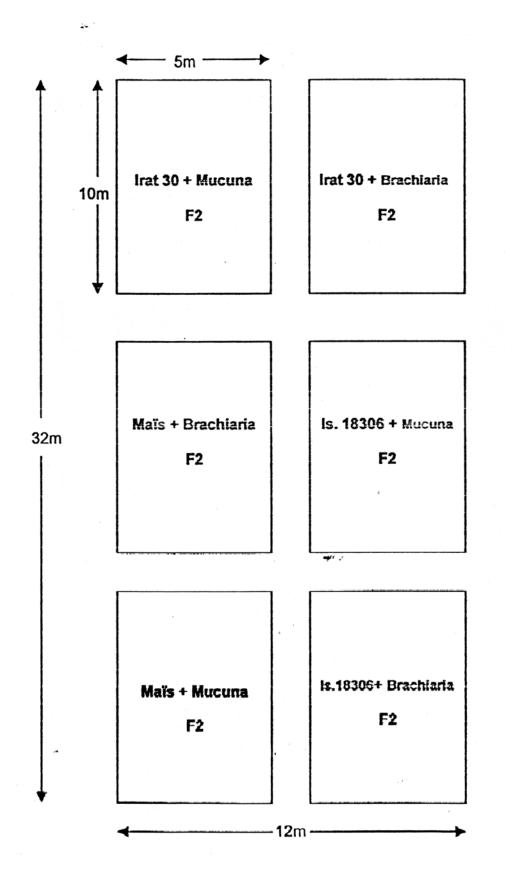

Parcelle élémentaire : 10 m x 10 m = 100 m²

DP : Dose préconisée

DD: Demi dose

Surface : 35,36 ares

LOCALISATION: MANAVONY

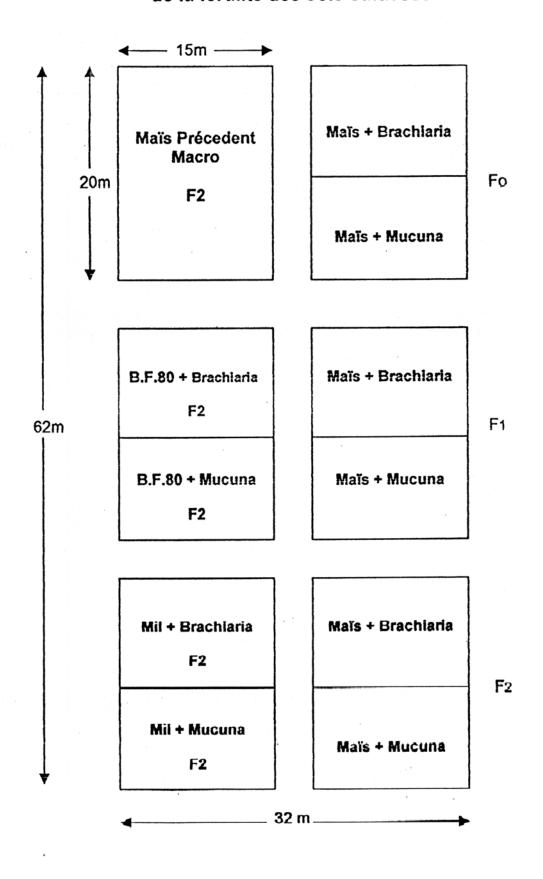


Surface 1.32,24 ares

LOCALISATION : ANKAZOABO

OPs Act 1 Act 2

Système de la jachère améliorée et restauration - de la fertilité des sols cultivés



Surface totale : 384 m2 Surface utile : 300 m2 Surface des allées : 84 m2

Localisation: SAKARAHA

OP5 Act 1 Act·2

Système de la jachère améliorée et restauration de la fertilité des sols cultivées

Surface totale : 1984 m2 Surface utile : 1800 m2 Surface des allées : 184 m2

Localisation: ANDRANOVORY

Collection Site SAKARAHA

Collection Mil

Exd 2 IP 5721 ICTP 8203 ICMV 221 MHV BC IP 6133 ICMV 1588 Boboni Irat 17 Irat 27 Irat 30 Irat 31

Irat 96 Pool Mihores D2C

ICMV.IS.88.102 ESCR II Mangagolo cinzana

Collection Vigna

Vigna David Vigna U-46-2 Vigna U-153 Vigna U-25-2 Vigna spLM1 Vigna U-596-2 Vigna spLF1 Vigna spLM2 Vigna U-96-1

Autres collections

Brachiaria ruziziensis Brachiaria brizantha Mucuna grise Stylosanthes scabra Collection site: ANKAZOABO

Collection Mil

Irat 17 Irat 27 Irat 30 Irat 31 Irat 96 ICMV 221 IP 6133 ICTP 8203 IP 5693

> IP 5721 Exd 2

MHVBC

Collection Vigna

Vigna spLM1 Vigna spLF2 Vigna U-25-2 Vigna U-46-2 Vigna David Vigna U-96-1

Collection site ANDABORO

Vigna U-596-2

Collection Sorgho

CSR 56-79 Irat 09 CSR 273 IS. 18-306 CSR 388 82.3.30.11 Diabarino Irat 204 IS 21-502 CSR 335 IS 14.306 Irat 321

Collection Vigna

Vigna spLF1 Vigna U-96-1 Vigna U-596-2 Vigna U-153 Vigna spLM1 Vigna U-46-2 Vigna U-25-2 Vigna David Vigna spLM2

Collection site ANDRANOVORY

Collection Mil

Pool melhores

Boboni

IP G133

D2C

ICMV0.ISS.88.102

MHVBC

Exd 2

ICTP 8203

ESCR II

IP 5693

IP 4852

IP 6465

IP 5721

IP 5131

ICMV 221

Collection Sorgho

CSR 18306

CSR 335

82.3.30.11

Irat 321

CSR 5440

CSR 660

IS 14306

Irat 206

Irat 207

Collection vigna anciens numéros

Vigna spLM2

Vigna spLF1

Vigna U-96.1

Vigna U-46.2

Vigna U-153

Vigna David

Vigna U-596.2

Vigna spLM1 Vigna U-25.2

Collection Vigna nouvelle introduction

Serido

CNC **79**6-9^E

CNC 0434

PITIUBA

CNC 664.86 G

CNC 792.9

CNC 788.10 E

CNC 870.10 E

CNC 664.79 G

CNC 870.15 E

CNC 868.9 E

IT 82 D 812

CNC 873.1 E

CNC 865.10 E

CNC 788.1 E

CNC 808.7 E

CNC 865.7 E

CNC 870.1 E

IPA 202

CNC 868.8 E

CNC 792.17 E

CNC 664.125 G

CNC 796.10 E

BR 17 GUAGUEIA

EMAPA 822

CNC 800.12 E

CNC 870.7 E

CNC 865.4 E

O.N.G. « TAFA »
TAny sy FAmpandrosoana
BP 252
601 - TULEAR

MdP Maison de Paysans BP 561 601 - TULEAR

FICHES TECHNIQUES

Systèmes de culture durables en semis direct et avec minimum d'intrants, protecteurs de l'environnement

Hubert RAZAFINTSALAMA Novembre 1999

RESUME

Dans les régions disposant encore des réserves de terre non cultivé la technique du semis direct sur couverture permanente des sols permet d'une part de limiter la baisse de fertilité du sol et, d'autre part de réduire l'enherbement des parcelles.

Dans toutes les situations pédoclimatiques, les systèmes de culture a base de semis direct sur couverture permanente des sols et en rotation sont beaucoup plus productifs et plus stables que lorsqu'ils s ont pratiqués avec travail du sol x monoculture.

Des résultats significatifs et promoteurs ont été observés et peuvent être considérés comme acquis des systèmes expérimentés, des itinéraires techniques maîtrisés sont reproductibles et appropriables par les paysans.

Ce recueil de fiches techniques a été rédigé à partir des travaux réalisés par le projet :

Convention TAFA / PSO

avec l'appui du CIRAD.CA principalement dans les régions du Sud-Ouest Malagasy.