Institut National Agronomique de Tunisie

Rapport de PROJET DE FIN D’ÉTUDES en vue d’obtenir
Le diplôme national d’ingénieur
Spécialité : Génie Rural, Eaux et Forêts
Option : Hydraulique et aménagement Rural
Intitulé

Impact des activités anthropiques sur la qualité des eaux souterraines du bassin « Nebhana »

Elaboré par
Olfa Gharbi

Devant le jury composé de :

Mme. Najla Tlatli
Mme. Jamila Tarhouni
M. Ridha El Beji
M. Issam Nouiri

INAT
INAT
CRDA
INAT

Président du Jury
Encadrant
Encadrant
Examinateur

Juin 2015
Liste des figures

Figure 1 : Localisation géographique de la zone d’étude .. 11
Figure 2 : Coupe topographique du bassin Nebhana .. 11
Figure 3 : pluie moyenne annuelle (mm) par station pluviométrique (1941 – 2010) 14
Figure 4 : les isohyètes du bassin Nebhana (2010) ... 14
Figure 5 : Variation mensuelle des températures moyennes(°C) entre 1970 et 2000 (DGRE, 2010) .. 15
Figure 6 : variation de l’évapotranspiration (mm) de la région de Nebhana (CRDA, 2010) 15
Figure 7 : Rose des vents de la région de Kairouan ... 16
Figure 8 : Les sous-bassins versants de Nebhana ... 17
Figure 9 : le réseau hydrographique du bassin Nebhana .. 18
Figure 10 : Carte pédologique du bassin de Nebhana ... 19
Figure 11 : carte géostructurale du bassin Nebhana (El Khomsi et al. 2012) 20
Figure 12 : Carte Structurale du bassin Nebhana (Dahri, 2009) ... 29
Figure 13 : Carte des entités hydrogéologique du bassin Nebhana ... 30
Figure 14 : Salinité des eaux des ouvrages sur la nappe de sisseb El Alem 36
Figure 15 : Profondeur totale des ouvrages sur la nappe de Sisseb El Alem 37
Figure 16 : Débits totales des ouvrages sur la nappe de sisseb El Alem 38
Figure 17 : Catégorie des puits ... 39
Figure 18 : Localisation des points d’échantillonnage .. 42
Figure 19 : Représentation graphique du Diagramme de Piper (Freeze & Cherry, 1979) 43
Figure 20 : Représentation graphique de Schoëller-Berkalov .. 44
Figure 21 : Projet SIG mis en place ... 45
Figure 22 : Exemple de géoréférencement d’une carte topographique à l’échelle 1/50000 48
Figure 23 : Projet SIG mis en place ... 50
Figure 24 : carte de répartition spatiale de la salinité des eaux souterraines du bassin Nebhana 55
Figure 25 : carte de répartition spatiale du Calcium .. 56
Figure 26 : carte de distribution spatiale de Mg2+ .. 57
Figure 27 : carte de répartition spatiale des Chlorures des eaux souterraines 58
Figure 28 : carte de répartition spatiale du Sodium ... 59
Figure 29 : Carte de répartition spatiale des Sulfates ... 60
Figure 30 : carte de répartition spatiale du Fluor .. 61
Figure 31 : Carte de répartition spatiale du potassium ... 62
Figure 32 : digramme de piper des eaux du bassin Nebhana ... 63
Figure 33 : Digramme de Schoëller-Berkaloff ... 64
Figure 34 : Diagramme de Wilcox des eaux souterraines du bassin Nebhana 65
Figure 35 : Evolution des teneurs de Cl- en fonction de la salinité ... 66
Figure 36 : Evolution des teneurs de SO42- en fonction de la salinité ... 67
Figure 37 : Evolution des teneurs de HCO3- en fonction de la salinité ... 67
Figure 38 : Evolution des teneurs de Na+ en fonction de la salinité .. 67
Figure 39 : Evolution des teneurs de K+ en fonction de la salinité .. 68
Figure 40 : Evolution des teneurs de Mg2+ en fonction de la salinité ... 68
Figure 41 : Evolution des teneurs de Ca2+ en fonction de la salinité ... 68
Figure 42 : Evolution des teneurs de HCO32- en fonction de la salinité .. 69
Figure 43 : Corrélation entre Cl- et Na+ ... 70
Figure 44 : Corrélation entre Cl- et Na+ ... 71
Figure 45 : Corrélation entre Ca2+ et SO42- .. 72
Figure 46 : Corrélation entre Mg2+ et SO42- .. 73
Figure 47 : indice de saturation de l’anhydrite ... 73
Figure 48: indice de saturation de l’aragonite ... 73
Figure 49: indice de saturation du Calcite ... 74
Figure 50: indice de saturation de Dolomite ... 74
Figure 51: indice de saturation du Gypse ... 74
Figure 52: indice de saturation de l’Halite ... 75
Figure 53: répartition des variables sur le premier plan de l’ACP ... 77
Figure 54: répartition des individus sur le premier plan de l’ACP ... 78
Figure 55: Dendrogramme représentant la classification des points d’eau par niveau de dissimilarités d’après le résidu sec. .. 79
Figure 56: variation du volume d’eau potable dans le bassin de Nebhana (GR, SONEDE, Transfert)(CRDA, 2014) ... 80
Figure 57: diminution de volume de l’eau potable rurale distribuée par les GDAs (CRDA, 2015) .. 81
Liste des tableaux

Tableau 1 : Population, ménages et logements par unité administrative du gouvernorat de Kairouan .. 12

Tableau 2: Les superficies des sous-bassins versants ... 18

Tableau 3 : les analyses physico-chimiques des eaux du bassin de Nebhana ... 53

Tableau 4: Matrice de corrélation des paramètres physico-chimiques étudiés ... 76

Tableau 5: valeurs propres de trois premières dimensions de l’ACP .. 76
Table des matières

1. Introduction.. 10
2. Localisation géographique de la zone d’étude.. 10
3. Cadre socio-économique... 12
4. Cadre climatique ... 13
 4.1 La pluviométrie ... 13
 4.2 La température .. 15
 4.3 L’évapotranspiration ... 15
 4.4 Le vent ... 16
5. Le réseau hydrographique ... 16
6. Pédologie ... 19
7. Cadre géologique ... 20
 7.1 Cadre lithostratigraphique ... 20
 7.1.1 Les formations secondaires .. 20
 7.1.2 Les formations tertiaires .. 23
 ➢ Le Mio-Plio-Quaternaire .. 26
 ➢ Le Quaternaire .. 26
 7.2 Cadre structurale : .. 27
 ➢ Synclinal de Bou Mourra ... 27
 ➢ Le Draa Souatir ... 28
 7.3 Etude hydrogéologique ... 30
 7.3.1 Structure de système aquifère Sisseb El Alem ... 30
 7.3.2 Formation aquifère des grès oligocènes Nadhour-Saouaf 30
 7.3.3 Formation aquifère Mio-Plio-Quaternaire Sisseb ... 31
 7.3.4 Formation aquifère oligocène El Alem ... 31
 7.3.5 Le synclinal d’Ain Djelloula ... 32
 7.3.6 Le synclinal de Bou Mourra ... 33
 7.3.7 Le bassin hydrogéologique de Chougafia ... 33
1. Inventaire 1985 : .. 35
 1.1. Données de l’inventaire : .. 35
 1.1.1. Salinité : ... 35
 1.1.2. Profondeur des ouvrages : .. 36
 1.1.1. Débit instantané : ... 37
 1.1.2. Volume : ... 38
1.1.3. Type des puits : ... 38
1.1.4. Catégorie des puits : ... 38
1.1.5. Densité des puits : ... 39
1 Collecte de données ... 40
1.1 Les données classiques ... 40
1.1.1 Les données inédites .. 40
1.2 Les missions du terrain ... 40
1.2.1 Campagnes piézométriques .. 40
1.2.2 Echantillonnage : ... 41
1.3 Méthodes hydrochimiques ... 42
1.3.1 Représentation graphique des analyses hydrochimiques 42
1.3.2 Les rapports ioniques caractéristiques 45
1.4 Mise en place d’un SIG .. 46
1.4.1 Définition du SIG ... 46
1.4.2 Organisation de la base des données spatiales : Géoréférencement des cartes 47
1.4.3 Cartographie ... 48
1. Étude géochimique .. 52
1.1 Les cartes de distribution spatiales ... 55
1.1.1. La distribution de la salinité ... 55
1.1.2. La distribution spatiale de Ca^{2+} .. 56
1.1.3. La distribution spatiale de Mg^{2+} .. 57
1.1.4. La distribution spatiale de Cl^- ... 57
1.1.5. La distribution spatiale de Na^+ .. 58
1.1.6. La distribution spatiale de SO_4^{2-} 59
1.1.7. La distribution spatiale de F^- ... 60
1.1.8. La distribution spatiale de K^+ .. 61
1.2 Origine des éléments chimiques .. 62
1.2.1. Diagramme de Piper .. 62
1.2.2. Diagramme de Schoëller- Berkaloff 63
1.2.3. Diagramme de Wilcoxon .. 65
1.2.4. Corrélation entre résidu sec et les éléments majeurs 66
1.2.5. Corrélation entre les éléments majeurs 69
1.2.5.1. Corrélation Ca^{2+}/HCO_3^- .. 69
1.2.6. Corrélation Na^+/Cl^- ... 69
1.2.7. Corrélation Mg\(^{2+}\)/Ca\(^{2+}\) ... 70
1.2.8. Corrélation Ca\(^{2+}\) et SO\(_4\)^{2-} ... 71
1.2.9. Corrélation Mg\(^{2+}\) et SO\(_4\)^{2-} ... 72
2 Etude géostatistique .. 75
 2.1 Matrice de corrélation : ... 75
 2.2 Analyse en Composantes Principales (ACP): 76
 2.3 Classification Ascendante Hiérarchique (CAH) : 78
3 L'eau potable Rurale et les GDAs ... 80
Introduction

L’eau est la condition de la vie. Elle est indispensable au fonctionnement des cellules et du métabolisme de tout être vivant. Si l’apparition et l’histoire même de la vie sont liées à l’existence de l’eau, l’histoire des hommes, nomades, villageois ou habitants des villes, est attachée à la présence de cette ressource, qu’il s’agisse d’un lac, d’une rivière, ou d’une source que le cycle de l’eau renouvelle et purifie sans cesse.

Aussi, malgré son abondance, la surexploitation et le gaspillage de l’eau douce ont pour conséquence d’en faire une ressource en cours de raréfaction, plaçant une partie de l’humanité ainsi que de nombreux écosystèmes en situation de pénurie ou de péril.

Face à ces défis majeurs, de nouvelles modalités d’utilisation, orientées vers le développement durable, apparaissent. Villes et pays cherchent à améliorer la potabilisation, la distribution et la consommation d’eau tout en luttant contre le gaspillage. La recherche de solutions à la pollution de l’eau douce et de la mer est en plein essor. L’avenir de l’eau est intimement lié à celui de l’humanité. Elle doit donc être préservée.

Le bassin de Nebhana fonctionne sous des pressions naturelles, économiques et humaines. En effet, la situation actuelle des ressources en eau et de leurs usages, présente des enjeux communs à de nombreuses régions du bassin méditerranéen : des ressources limitées et déjà largement exploitées pour répondre à la croissance des besoins et une situation de concurrence entre usages sectoriels et des conditions climatiques contraignantes qui viennent renforcer les tensions sur les ressources.

Le présent travail se focalise sur l’étude de l’impact des activités anthropiques sur la quantité et la qualité des eaux souterraines du bassin Nebhana. Le rapport contient trois chapitres :

1. Le premier chapitre concerne l’étude fine de la zone d’étude : sa localisation géographique, le climat, la géologie et l’hydrogéologie détaillée ….etc

2. Le deuxième chapitre contient la méthodologie adoptée ainsi que la liste du matériel et les outils utilisés
(3) Le troisième chapitre contient les résultats et leurs interprétations
Chapitre 1 : étude générale de la zone d’étude

1 Introduction

Les eaux souterraines représentent aujourd’hui un véritable enjeu dans le cadre affirmé d’un développement durable. Les aquifères des grands bassins sédimentaires constituent une ressource potentielle considérable tout en étant quasiment insensible aux phénomènes de surface comme les variations climatiques saisonnières (Douez, 2007). Donc, l’étude des composantes naturelles et le diagnostic de l’état de la zone et du système aquifère étudié constitue une étape primordiale pour mettre la problématique des ressources en eau dans son contexte.

2 Localisation géographique de la zone d’étude

La zone d’étude, Situé dans la Tunisie centrale, le gouvernorat de Kairouan jouit d'une position géographique privilégiée puisqu'il représente un carrefour entre le nord, le sud, l'est et l'ouest du pays. Elle est localisée selon le système Lambert (données Carthage) entre les coordonnées 530000 et 610000 vers l’Est et 3880000 et 4000000 vers le Nord. Il est limité par les gouvernorats de Zaghouan, Siliana, Kasserine, Sidi Bouzid, Sfax, Sousse et Mahdia, elle couvre une superficie de 3600 km², soit 4,1 % de la superficie du pays.

Le gouvernorat de Kairouan est caractérisé par des successions de plaines et de montagnes et limité, à l'Est, par un ensemble de Sebkhas (Chérita, Kelbia et Sidi El Hani). Il est divisé en deux sous régions géographiques distinctes ; à l’Est, une plaine au relief très peu accidenté et à l’Ouest, une topographie très variable où émergent plusieurs hauteurs donnant lieu au bassin versant de Nebhana.
Topographiquement, le bassin est caractérisé par plusieurs chaînes de montagne dont les altitudes ne dépassent pas les 900 m d’altitude par rapport au niveau de la mer. La surface du bassin est environ 3250 Km2.
3 Cadre socio-économique

Le gouvernorat de Kairouan abrite en 2009 une population de 557 200 habitants.

Tableau 1 : Population, ménages et logements par unité administrative du gouvernorat de Kairouan

<table>
<thead>
<tr>
<th>Communes et arrondissements</th>
<th>Population</th>
<th>Ménages</th>
<th>Logements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Masculin</td>
<td>Féminin</td>
<td>Total</td>
</tr>
<tr>
<td>Kairouan</td>
<td>58859</td>
<td>9044</td>
<td>117903</td>
</tr>
<tr>
<td>Kairouan Medina</td>
<td>6168</td>
<td>6188</td>
<td>12356</td>
</tr>
<tr>
<td>El Mansoura</td>
<td>14511</td>
<td>14297</td>
<td>28808</td>
</tr>
<tr>
<td>Cité Jebra</td>
<td>25194</td>
<td>25211</td>
<td>50405</td>
</tr>
<tr>
<td>El Kebla</td>
<td>12986</td>
<td>13348</td>
<td>26334</td>
</tr>
<tr>
<td>Echbika</td>
<td>1250</td>
<td>1255</td>
<td>2505</td>
</tr>
<tr>
<td>Sbikha</td>
<td>3310</td>
<td>3466</td>
<td>6776</td>
</tr>
<tr>
<td>El Oueslatia</td>
<td>4064</td>
<td>4380</td>
<td>8444</td>
</tr>
<tr>
<td>AinDjeloula</td>
<td>829</td>
<td>822</td>
<td>1651</td>
</tr>
<tr>
<td>Haffouz</td>
<td>4088</td>
<td>4137</td>
<td>8225</td>
</tr>
<tr>
<td>El Alaa</td>
<td>1278</td>
<td>1379</td>
<td>2657</td>
</tr>
<tr>
<td>Hajeb El Ayoun</td>
<td>4751</td>
<td>4897</td>
<td>9648</td>
</tr>
<tr>
<td>Nasrallah</td>
<td>2399</td>
<td>2655</td>
<td>5054</td>
</tr>
<tr>
<td>Menzel Mehiri</td>
<td>1614</td>
<td>1742</td>
<td>3356</td>
</tr>
<tr>
<td>Echrarda</td>
<td>682</td>
<td>705</td>
<td>1387</td>
</tr>
<tr>
<td>Bouhajla</td>
<td>3059</td>
<td>2943</td>
<td>6002</td>
</tr>
</tbody>
</table>

En dépit de la richesse géologique de la région de Kairouan et de ses potentialités en substances minérales utiles ainsi que leur diversité lithologique et minéralogique, le paysage économique du gouvernorat de Kairouan est dominé essentiellement par l’exploitation et la transformation de substances utiles et de matières premières abondantes tels les sables des régions de Cherichira, Sbikha et Oueslatia, les granulats de la région d’El Haouareb. Le secteur des industries des matériaux de construction, du bâtiment, de la céramique et du verre est représenté par la future cimenterie du SOTACIB et l’unité de traitement des sables industriels de la région d’Oueslatia.

La quasi-totalité des jeunes présents, diplômés de l’enseignement supérieur, désirent intégrer la fonction publique. Pourtant, d’après les responsables locaux –qui sont souvent sollicités,
voire « harcelés » sur ce sujet, cette demande a de très faibles chances d’aboutir. Cependant, les discours politiques, au lieu d’être réalistes, laissent les « portes ouvertes à l’espoir ».

Le développement d’un tourisme écologique autour de sites naturels et écologiques fait l’unanimité des participants, tous y sont favorables car ce type de tourisme ferait connaître leur localité et entraînerait le dynamisme économique de la région.

4 Cadre climatique

4.1 La pluviométrie

La pluviométrie moyenne annuelle sur soixante ans à la station de mesure est de l’ordre de 402mm. Elle est caractérisée par une variabilité saisonnière et interannuelle. Le maximum mensuel correspond au mois d’octobre avec 51mm et le minimum est enregistré au mois de juillet avec moins de 8,43mm.

Le bassin versant de Nebhana se caractérise par un régime pluviométrique ayant deux aspects: Des pluies d’orages localisées en septembre provoquant des crues brutales et de courtes durées et des pluies des mois de février, mars et avril, intéressent une plus grande superficie du bassin versant, provoquent des crues à débits maxima, instantanées relativement plus faible, mais dont les apports sont plus importants (COTHA, 1957).
Figure 3: pluie moyenne annuelle (mm) par station pluviométrique (1941 – 2010)

Figure 4 : les isohyètes du bassin Nebhana (2010)
4.2 La température

Kairouan est une région de centre de la Tunisie avec un climat, variable de type aride à semi-aride. Les températures moyennes pour l'ensemble de la région sont de 9°C en décembre et de 34°C en juillet. Ces températures traduisent les propriétés climatiques de la zone caractérisée par l’interaction entre l’influence maritime et l’influence continentale. Dans la zone d’étude, la moyenne des minimas de janvier est de 4,4°C et celle des maximas de juillet est de 32,4°C et la moyenne annuelle est de l’ordre de 19°C.

![Figure 5: Variation mensuelle des températures moyennes(°C) entre 1970 et 2000 (DGRE, 2010)](image)

4.3 L’évapotranspiration

L’évapotranspiration potentielle est plus importante pendant les mois de Juin, Juillet et Aout où le total mensuel dépasse les 160mm. Elle est plus faible durant les mois de Novembre, Décembre, Janvier et Février au cours desquels le total mensuel potentiel évaporé et transpiré est compris entre 38 et 52 mm.

![Figure 6: variation de l’évapotranspiration (mm) de la région de Nebhana(CRDA, 2010)](image)
4.4 Le vent

Deux types de vent caractérisent le régime éolien au niveau de la zone d’étude ; le Jebbali et le Sirocco. Le premier est un vent très froid qui souffle pendant les périodes froides de l’année par contre le second est un vent chaud et sec qui souffle en périodes sèches et qui augmente souvent la température en accélérant le dessèchement de l’atmosphère. Les vitesses du vent les plus récurrents sont inférieures à 50 km/h.

Figure 7: Rose des vents de la région de Kairouan

5 Le réseau hydrographique

L’impluvium du bassin versant de Nebhana s’étale sur une superficie de 3600 km², il est drainé par une multitude de cours d’eau naturels (Nebhana, Khrioua, Khetem, Ogla, Bou Jeraf, Haddada…). Le bassin versant de Sisseb-El Alem (Figure 9) peut être décomposé en plusieurs sous bassins selon les principaux cours d’eau de la région.
Les plus importants sous-bassins sont ceux de Nebhana (une portion du grand bassin versant de Nebhana), d’El Ogla, de Saâdine et de Khetem. Le sous-bassin de Nebhana possède un talweg de 35 km et a une superficie de 142 km² avec un périmètre de 75 km. Le sous-bassin d’El Ogla possède un talweg de 24 km et un périmètre de 49 km, cet oued draine une superficie de 89 km². Concernant les sous-bassins versant de Saâdine et Khetem, ils présentent respectivement un talweg de 27 km et 23 km, un périmètre de 50 km et 51 Km et une superficie de 79 et 76 km².
Tableau 2: Les superficies des sous-bassins versants

<table>
<thead>
<tr>
<th>Nom du sous-bassin versant</th>
<th>Superficie (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ogla</td>
<td>88.95</td>
</tr>
<tr>
<td>Sahel</td>
<td>37.11</td>
</tr>
<tr>
<td>Haddada</td>
<td>34.93</td>
</tr>
<tr>
<td>Kseub</td>
<td>27.61</td>
</tr>
<tr>
<td>Khetem</td>
<td>75.61</td>
</tr>
<tr>
<td>Saâdine</td>
<td>78.76</td>
</tr>
<tr>
<td>Menngoub</td>
<td>9.61</td>
</tr>
<tr>
<td>El Aoudj</td>
<td>48.97</td>
</tr>
<tr>
<td>Khrioua</td>
<td>40.74</td>
</tr>
<tr>
<td>Nebhana</td>
<td>141.63</td>
</tr>
<tr>
<td>BouJeraf</td>
<td>51.18</td>
</tr>
<tr>
<td>Bou Mourra</td>
<td>30.98</td>
</tr>
</tbody>
</table>

Figure 9: le réseau hydrographique du bassin Nebhana
6 Pédologie

La région du bassin versant de Nebhana constituée de montagnes et de collines d’altitude variable de 230 à 1360m (JbelsBargou, JbelsFkirine, JbelsOueslat, Jbels Bou Zabbouss, Djebel Serdj). Les unités géomorphologiques les plus importantes sont constituées des glacis de JbelOueslat.

Les sols sont de types rendzines, sur roche calcaire, dolomitique ou gypseuse, souvent riches en calcaire actif et présentant de faibles réserves en eau. Les sols sont souvent argilo-sableux, très menacés par l’érosion, ce phénomène est favorisé par l’insuffisance du couvert végétal et le caractère torrentiel des précipitations. (DGRE, 1995)

Figure 10: Carte pédologique du bassin de Nebhana
7 Cadre géologique

La plaine Kairouannaise est une fosse d'effondrement de direction Nord-Sud se raccordant à la bordure Ouest par des flexures passant souvent à des fractures et à l'Est au Draa Es Souatir par une grande faille méridienne. L'accumulation sur de grandes épaisseurs de sédiments identiques au point de vue lithologique, continentaux, certainement d'âge post-miocène, Plio-quaternaire montre un phénomène de subsidence qui, commencé dès la phase orogénique pliocène s'est poursuivi durant le quaternaire et n'a vraisemblablement pas cessé de nos jours (Castany, 1956).

Figure 11: carte géostructurale du bassin Nebhana (El Khomsi et al. 2012)

7.1 Cadre lithostratigraphique

Les terrains en affleurement débutent par les formations secondaires.

7.1.1 Les formations secondaires

7.1.1.1 Le Trias

Il se présente sous deux faciès : salifère et calcaire.

- Le faciès salifère : est constitué d'argiles et de grès bariolés parfois accompagné de gypse et de cargnioles.
Le faciès calcaire : est constitué de calcaires organo-détritiques, dolomitiques siliceux gris clair et gris foncé en bancs de 30 à 230 cm d'épaisseur. Ce faciès affleurant au flanc Est de Djebel Fkirine, montre des affinités évidentes avec les calcaires Jurassiques.

7.1.1.2 Le jurassique

Il affleure principalement sur les hauteurs des Djebels Ben Saidane, Fkirine, Kef el Azeiz et Zaress.

- Le Jurassique Inférieur est représenté par les calcaires gris-clairs organo-détritiques plus ou moins dolomitisés et siliceux en gros bancs, avec une épaisseur de 215 m au niveau de Djebel Fkhirine.
- Le Jurassique Moyen est caractérisé par des calcaires gris foncés, à gros silex noirs, parfois bréchoïdes avec des bélémites. Les bancs calcaires (10-55 m) sont séparés par de minces lits de marnes schisteuses. L'épaisseur de ces calcaires dépasse rarement 35 m.
- Le Jurassique Supérieur est caractérisé par des couches bariolées constituées par des calcaires marneux rougeâtres, noduleux, friables en bancs de 10 à 90 cm et des marnes rouges verdâtres. La partie supérieure du Malm (Jurassique supérieur) présente une séquence de calcaires à faciès pélagique ou mixte avec de minces intercalations de marnes.

7.1.1.3 Le crétacé

Le Crétacé est subdivisé en deux parties :

- Crétacé inférieur (Beriasien - Albien)
 - Beriasien : Les sédiments lithoniques des faciès pélagiques et mixtes sont surmontés par une alternance de calcaires, de marno-calcaires et de marnes d'une épaisseur de l'ordre de 30m.
 - Valanginien - Hauteurivien : Cet étage comprend les séquences lithostratigraphiques suivantes : des séquence de marnes schisteuses (épaisseur 100m), des séquence
flyschoïde (puissance variable), des alternances de marnes, de marno-calcaires et de calcaires (puissance 50 à 350m) et des séquenceflyschoïde (épaisseur 120m)

- **Barrémien - Aptien - Albinen** : On a distingué les séquences lithostratigraphiques suivantes :
 - Calcaire du Barrémien inférieur (20m)
 - Séquence flyschoïde du Barrémien (120 à 270m)
 - Alternance de marnes de marno-calcaires et de calcaires du Barrémien : (10 à 30m)
 - Séquence flyschoïde inférieure de l'Aptien (20 à 50m).
 - Calcaire noirs en plaquettes (4 à 30m)
 - Alternance inférieure de marnes et de marno-calcaires de l'Aptien (167 m)
 - Séquence flyschoïde supérieure de l'Aptien
 - Alternance supérieure de marnes, de marno-calcaires et de calcaire de l'Aptien supérieur.
 - Alternance de marnes, de calcaires et de marno-calcaires de l'Albin inférieur (125m)
 - Séquence marneuse de l'Albin (215m).

- **Crétacé supérieur : Cénomanien – Maestrichtien**

 Les assises du Cénomanien et du Turonien représentent des types de faciès très stables. Il s'agit de marnes et de calcaires qui sont par endroit en plaquettes. La présence de quartz dans les calcaires en plaquettes du cénomanien inférieur (dans les résidus de lavage) confirme la faible influence de la sédimentation détritique. Quant au Cénomanien, il est représenté par le faciès du sillon tunisien.

 - **Le Cénomanien - Coniacien inférieur** sous faciès "sillon tunisien" : Il s'agit de :
 - Marnes et calcaire du Cénomanien (40m)
 - Marnes noirs feuilletées du Turonien (10 à 20m)
 - Marnes verdâtres du Turonien (70 à 80m)
 - Calcaire du coniacien inférieur (40m)

 - **Coniacien - Santonien** : Il s'agit d'une série monotone de marnes verdâtres (250m) à intercalations de marno-calcaires correspondant au Coniacien supérieur jusqu'au Santonien moyen. Cette série est bien développée au Dj Douamess.

 - **Campanien - Maestrichtien** : la formation Abiod est représentée par:
les alternances inférieures du Campanien inférieur,
la barre des calcaires du campanien supérieur,
les alternances moyennes du Campanien supérieur et la barre des calcaires supérieurs du Campanien supérieur et du Maestrichtien basal, ainsi que par les alternances supérieures du Maestrichtien inférieur.

7.1.2 Les formations tertiaires

7.1.2.1 Le Paléogène : formation el Haria

Le paléogène est constitué par la formation El Haria. Elle correspond en grande partie au Danien et au paléocène. Il s'agit d'argiles et de marnes gris-vert renfermant des intercalations de calcaires gris parfois rognonneux et sableux.

L'épaisseur totale de la formation El Haria atteint à l'Ouest de Sidi Abid, 76,5m environ. Son épaisseur réduite ailleurs est due soit aux conditions de sédimentations soit aux phénomènes tectoniques. Elle affleure au flanc occidental du synclinal de Saouaf à DjebelZbidine (Hamza, 1992).

7.1.2.2 L'Eocène

- **Formation Métlaoui** : Elle surmonte les argiles d'el Haria. Les termes de base montrent des phénomènes d'interruption et de ravinement des argiles d'El Haria. La formation Metlaoui est constituée à la base de calcaires à globigérines qui forment un ressaut dans le relief. L'épaisseur de la formation Metlaoui varie entre 30 et 50m.

- **Formation Souar** : Il s'agit d'une épaisse séquence argileuse ou marneuse comprise entre le calcaire du Lutetien inférieur et les grès de fortune oligocène. Des intercalations de calcaires coquillais et de lumachelles peuvent y être fréquentes. Il y a continuité de sédimentation entre la formation Metlaoui et les argiles du Souar. Les unités inférieures sont franchement marines et l'on y observe une régression progressive : apparition de gypse, niveaux glauconieux, éléments gréseux, disparition de formes pélagiques de la micro-faune.

7.1.2.3 **L'Oligocène**

Dans l'Oligocène, les bancs de grès nombreux sont séparés par des lits argileux, épais et peu perméables. On distingue :

- A la partie inférieure, une alternance d'épaisses marnes sableuses, jaunes ou brunes et de minces bancs de grès ou de sables bruns rouges. L'épaisseur est voisine de 300 m.
- A la partie supérieure, des bancs de grès de couleur claire et des grès durs intercalaires ont 35 à 40 mètres d'épaisseur (Sogetha, 1964). On a une alternance de bancs de grès et de marnes où les grès prédominent. Son épaisseur est de 150 à 200 mètres environ (Hamza, 1992).

7.1.2.4 **Le Néogène**

Il est représenté par le Miocène à prédominance marine et le Mio-Pliocène à prédominance continentale. (Hamza, 1992).

- **Miocène marin**

Dans la région d'étude, le miocène est à prédominance marine représentée par :

- **Le Burdigalien** : Il affleure dans la région de Nadhour Saouaf, constitué par des calcaires gréseux lumachelles dont l'épaisseur est de 15 m.

- **Le Langhien** : Il est représenté par les formations Ain Grâb et Mahmoud, Beglia et Saouaf. Il est composé en majeure partie d'argiles et de marnes bariolées avec quelques bancs de grès et de lumachelles.

 - **La formation Mahmoud** : Cette formation débute dans la région de l'Oued Nebhana par des argiles bioclastiques (Saâdi, 1997) surmontées par des argiles
glauconieux. La partie sommitale se caractérise par la présence de niveaux centimétriques de silts et de sables très fins (Boujamaoui, 2000)

La formation Beglia : Elle est présente au synclinal de Nadhour Saouaf par des grès massifs et grossiers, parfois friables et souvent à stratifications entrecroisées. Les grès prédominent à la base et les intercalations argileuses sont plus nombreuses vers le sommet avec passage continu vers les lignites. L’épaisseur de cet ensemble atteint 360 m.

La Formation Saouaf : Elle est constituée d’une alternance de sable ou de grès friables à grains fins, de marnes et de lignites. Les intercalations de lignites rares et minces dans la partie inférieure, deviennent plus nombreuses et plus épaisses vers le sommet. La puissance de cette formation à Henchir El Gonnara est de l’ordre de 480 m. (Biely et al. 1972)

➢ *Le Mio-Pliocène continental*

Le Mio-Pliocène caractérisé au Djebel Batene et dans la cuvette de Djebibina est épais de plusieurs centaines de mètres. Il est constitué d'une alternance très monotone de conglomérats, de graviers, de sables et d'argiles rougeâtres (SOGETHA, 1964).Les dépôts continentaux, du Mio-Pliocène reposent en discordance, soit sur les sédiments du Miocène marin (synclinal de Saouaf) soit sur les terrains plus anciens (cuvette d'El Alem, anticlinal de Ktifa). Ces dépôts se présentent sous deux faciès :

- Une séquence d'argile et de grès parfois conglomératique
- Une séquence à prédominance conglomératique

La séquence d'argile et de grès débute par un conglomérat de base qui contient des galets du Crétacé et du Tertiaire. Au dessus, viennent des marnes et des argiles verdâtres, ocres et rougeâtres renfermant des lits de grès grossiers, parfois conglomératiques. L’épaisseur de cette séquence est de l'ordre de 200m.

La séquence à prédominance conglomératique est caractérisée par des conglomérats grossiers à matrice sablo-argileuse. Les conglomérats s'intercalent avec des passées d'argiles ocres et rouges. L'épaisseur de cette séquence atteint 120m.

Le Mio-Pliocène montre une sédimentation de mer peu profonde à influences continentales et laguno-limniques. Le matériel clastique qualitativement différent de celui de l'Oligocène, indique une origine autre que celle de la formation Cherichira de l'Oligocène (Hamza, 1992).
Le Mio-Plio-Quaternaire

Plusieurs sondages ont traversé le remplissage de la cuvette synclinale d'El Alem, et ont atteint des marnes compactes, noirâtres ou bleues, que l'on peut considérer comme étant le substratum de la formation contenant les nappes intéressantes.

L'étude de la microfaune des marnes a permis de déterminer l'âge, Eocène terminal - Lutetien supérieur) ou l'Oligocène inférieur (SOGREAH, rapport R 7036).

Le remplissage de la fosse s'est donc fait entre l'Oligocène moyen et le Quaternaire. La formation dans laquelle les divers étages ne sont pas identifiables est appelée Mio-Plio-Quaternaire (SOGETHA, 1964).

Le Quaternaire

- Sicilien : Sur le flanc oriental du synclinal de Nadhour - Saouaf reposent en discordance sur les différentes unités Mio-Pliocène, un complexe d'argiles sableuses, rougeâtres et de grès tendres avec localement une intercalation de conglomérats non cimentés. L'épaisseur totale de ce complexe est d'environ 10m.

- Eboulis : Les éboulis se localisent plus particulièrement dans les régions constituées par des roches rigides (calcaires Eocène et Campanien) formant des niveaux à pente assez marquée. On constate que la surface des éboulis est souvent encroûtée.

- Alluvions anciennes : Ces alluvions sont formées de cailloutis, d'argiles et de sables. Elles sont épaisses d'une vingtaine de mètres.

- Alluvions récentes : Elles sont bien observables près des oueds Zarzour, Sahel, Saadine, Khrioua, Nebhana, El Alem etc. Dans les parties supérieures des oueds prédominent les graviers et les sables en passant vers les plaines, les composantes des alluvions deviennent plus fines.

7.2 Cadre structurale :

- **Synclinal de Bou Mourra**

C'est un synclinal perché dont le coeur est formé par des terrains gréseux appartenant au Miocène. Les reliefs situés en bordure Ouest de Sbikha sont constitués par une importante série marno-géseuse à large prédominance gréseuse que l'on peut rattacher au Miocène et sans doute à l'Oligocène supérieur.

Ces terrains reposent en concordance sur des marnes gréseuses (250m de puissance) et des marnes franches (400 à 600m d'épaisseur) appartenant, les premières à l'Oligocène, les secondes au Mésonummulitique (Lutetien supérieur, Auversien et Batonien). Ces marnes constituent le substratum du Bled Sbikha. Elles apparaissent à la faveur d'entailles pratiquées par les oueds dans les alluvions récentes (éboulis, sables, provenant de la décomposition des grès). Elles sont fréquemment recouvertes par des travertins notamment en bordure du bled sisseb (Hamadas, Gamgoun et El Heram par exemple).

- **Le monoclinal de Sbikha**

Le synclinal de Bou Mourra est bordé au SE par un anticlinal dont l'axe correspond approximativement à la crête de Jebel Dekrilla. Le flanc Est de cet anticlinal peut se suivre au niveau du jebel Dekrilla jusqu'à Sbikha. En allant du coeur de l'anticlinal vers le flanc Est on rencontre :

- Les marnes du Sussonien presque partout recouvertes d'alluvions,
- le Lutetien inférieur : calcaires marneux blancs très fissurés en surface et qui ont une puissance voisine de 60m.
- le Mesonummulitique : marnes blanches identiques à celles qui forment le substratum du Bled Sbikha,
- alternance de marnes et grès à prédominance de marnes. Les bancs gréseux qui appartiennent à cet ensemble oligocène affleurent au Nord et au Sud immédiat de Sbikha le long de la route G.P.3 (Tunis Kairouan par pont du Fahs). Ces bancs de grès très redressés à pendage Est, c'est à dire dirigé vers le Bled Sisseb, constituant la limite entre les reliefs de l'ouest de la cuvette de Djebibina - El Alem.
➢ **Le synclinal de Djebibina-Saouaf**

Le synclinal de Djebibina-Saouaf prolonge vers le Nord le synclinal de Bou Mourra. C'est un synclinal à coeur vindobonien dont le flanc sud est recouvert par les alluvions de la plaine de Kairouan.

Les terrains constituant le flanc Nord ont un pendage dirigé vers la cuvette de Djebibina. Les grès de l'Oligocène et du Vindobonien reposent sur les marnes de l'Eocène situés immédiatement au Sud de la grande faille qui va de jebel Zaghouan au Jebel Bargou en passant par les jebelsFkirine et Ben Saïdane.

Ce synclinal est compartimenté par un système de failles de direction NW-SE c'est-à-dire à peu près perpendiculaire à la grande faille de la dorsale tunisienne.

Sur le Miocène reposent quelques affleurements de Pliocène continental constitués en grande partie par une croûte imperméable.

➢ **L'anticlinal de jebel Fadheloun**

L'anticlinal de jebel Fadheloun d'axe SW-NE est formé d'un noyau calcaire et de marnocalcaire d'âge Crétacé entouré sauf vers le Sud, où il s'ennoye sous les alluvions du Bled Sisseb, par les calcaires du Lutetien et les marnes de l'Eocène moyen.

➢ **Le Draa Souatir**

Le Draa Souatir est une mince et longue ride de direction presque N-S qui longe, à l'Ouest, la cuvette de Djebibina-El Alem et, à l'Est, la Sebkha Kelbia. C'est une série presque verticale plongeant vers l'Est, comprise entre l'Eocène supérieur et un ensemble continental constitué par le Mio-Pliocène.

Le Draa Souatir représente vraisemblablement le flanc Est d'un anticlinal dont le flanc ouest serait caché par le remplissage de la Cuvette de Sisseb (Hamza, 1992).
Figure 12: Carte Structurale du bassin Nebhana (Dhahri, 2009)
7.3 Étude hydrogéologique

Le bassin de Nebhana renferme quatre entités hydrogéologiques bien différenciable (Fig14).

![Diagram](image)

Figure 13: Carte des entités hydrogéologique du bassin Nebhana

7.3.1 Structure de système aquifère Sisseb El Alem

La cuvette de Sisseb El Alem comporte un réservoir d’eau qui repose sur un substratum de marnes grises attribuées à l’Eocène supérieur. La géométrie de ce substratum subit un changement de l’amont vers l’aval du bassin hydrogéologique. Ainsi, son épaisseur passe de 200 à 50 mètres avec un affaissement de 250 mètres. La cuvette de Sisseb El Alem est donc une cuvette subsidente formant un important réservoir d’eau contenu dans des formations lenticulaires perméables, dont la lithologie varie de l’amont vers l’aval du bassin. Les principaux aquifères sont présentés ci-après.

7.3.2 Formation aquifère des grès oligocènes Nadhour-Saouaf

Captée dans la partie amont du bassin, cette formation aquifère est constituée principalement de formations perméables de grès de sable d’une épaisseur moyenne de 100 mètres. Ces dépôts affleurent au nord-ouest du bassin, ce qui favorise l’alimentation de l’aquifère.
Cependant, vers l’est, les formations perméables diminuent d’épaisseur avec l’apparition de dépôts semi-perméables de sable argileux ou d’argile sableuse.

7.3.3 Formation aquifère Mio-Plio-Quaternaire Sisseb

Cette formation aquifère caractérise le centre du bassin. Elle est constituée de dépôts détritiques lenticulaires de sable, galets et graviers colmatés par des sédiments argileux. Il s’agit d’une sédimentation alluviale entraînée par les oueds au cours du remplissage de la cuvette. L’épaisseur de la série détritique d’âge mio-plio-quaternaire augmente de l’ouest vers l’est du bassin, passant de 100 à 150 mètres. En fait, le substratum est atteint à une profondeur de 50 à 150 mètres aux bordures et à 250 mètres au centre de la cuvette.

Concernant la nappe phréatique Sisseb, la roche-réservoir devient de plus en plus perméable vers l’est du bassin. Elle est logée dans des lentilles de sables et de graviers. Quant à la nappe profonde Sisseb, elle renferme deux niveaux perméables logés dans des sables, des graviers et des galets.

7.3.4 Formation aquifère oligocène El Alem

Ainsi, l’étude de la géométrie du réservoir nous a permis d’identifier trois formations aquifères différentes. Deux formations aquifères attribuées à l’Oligocène dans la partie amont et aval du bassin et une formation aquifère mio-plio-quaternaire dans la partie médiane. Ces aquifères renferment plusieurs nappes qui constituent un réservoir d’eau très important, ce qui explique l’intensité de son exploitation qui a débuté dès les années 1960.
7.3.5 **Le synclinal d'Aïn Djelloula**

Il s'agit d'un synclinal compartimenté, dissymétrique à axe décalé vers l'Ouest. Deux structures synclinales séparées par l'anticlinal du Djebel Chaker-Rhanzour s'individualisent :

- à l'Ouest la structure synclinale de Nahaïa
- à l'Est la structure synclinale d'oued El Hamra.

Deux horizons aquifères superposés occupent ces structures :

- Un horizon superficiel : constitué par du Mio-Pliocène continental représenté par des sables argileux, des argiles et des marnes verdâtres.
- Un horizon sous—jacent : constitué par les calcaires fissurés de l'Eocène Inférieur, formation Metlaoui (localement calcaires de Bou-Dabbous).

Une tentative d'étude de la fracturation a été faite par observation directe sur le terrain (essai) détermination de la nature et de l'âge relatif des accidents structuraux). Cette investigation associée à l'observation du comportement des points d'eau notamment les sources, en régime soutenu puis non influencé permettent de conclure que :la fissuration des roches carbonatées du synclinal d'Aïn Djelloula est superficielle. Il s'agit alors d'un épikarst circulation superficielle qui fournit l'eau au système uniquement lorsque les charges de cet aquifère sont suffisantes. En profondeur et dans les axes de structures synclinales du Bled Mahla et d'oued el Hamra ; les horizons carbonatés de l'Eocène Inférieur deviennent de plus en plus compactes. Il semble que les sédiments post-Eocène Inférieur qui se sont déposés aient colmaté la fracturation préexistante.

Entre ces deux extrêmes existe un karst noyé à circulation profonde, reconnu par les forages de reconnaissance. Ce karst de profondeur variable présente un champ de fracturation à écoulement karstique privilégié.

L'eau provenant de la nappe profonde présente une excellente qualité chimique $RS = 0,4$ à $0,7$ g/l. La nappe phréatique présente une variation concentrique de salinité, une moyenne ne saurait refléter la réalité. Toutefois, cet aquifère étant libre, la salinisation est excessive en régime non influencé et il n'est pas exclu de voir des puits tarir en période estivale.
Les eaux de cet aquifère calcaire de Djebel Chakeur sont comparativement beaucoup plus chargées en nitrates (25 mg/l) ainsi qu’en résidu sec (0,7 g/l) que les eaux des calcaires de Djebel Serdj. La qualité chimique de ces eaux est relativement stable.

7.3.6 Le synclinal de Bou Mourra

L’aquifère est constitué de grès continentaux de l'Oligocène supérieur reposant sur un substratum de marnes éocènes. La nappe est en grande partie à surface libre et se trouve alimentée par 270 Km d'affleurements gréseux perméables dont 50 seulement bénéficient.

Au Nord de la ligne de partage des eaux, l'écoulement s'effectue en direction de la plaine de Sbikha.

L'écoulement des eaux souterraines du bassin sud s'effectue vers les plaines de Sbikha et de Chougafia. Les exutoires aux limites du réservoir sont constitués par un ensemble de sources (dont l'Ain Bou Mourra) ; l'évaporation à l'aval où la nappe est subaffleurante, et les débits pérennes des oueds (Maafrine, Serdiana, Bou Mourra, Essid).

La nappe de Bou Morra est une structure synclinale constituée de grés oligocène ayant une bonne qualité chimique. La qualité des eaux souterraines de cette nappe est caractérisée par une faible teneur en nitrates variant de 12 à 17 mg/l (Ce taux reste toujours acceptable et comparable à celui de la nappe des grés de Oueslatia) et une faible charge en sels (0,8 g/l). Le taux en nitrates est surtout faible car les périmètres irrigués de la région sont en dehors de l’entité aquifère.

7.3.7 Le bassin hydrogéologique de Chougafia

Il s'agit d'un aquifère compartimenté composé d'un horizon perméable à sédimentation détritique mio-plio-quaternaire surmontant par endroits une autre formation hydrogéologique perméable renfermée dans les calcaires fissurés du Crétacé. Supérieur. Ce deuxième aquifère quoique discontinu a été reconnu au niveau de Rouissat par le dernier forage pétrolier foré dans la région. Il laisse espérer des possibilités aquifères nouvelles mais rien ne permet de quantifier ces indices ni d'évaluer la qualité de l'eau.

D'autre part les gradients hydrauliques extrêmement faibles dans le Sud de la plaine et les côtes piézométriques des niveaux superficiels semblent indiquer un drainage important des nappes profondes du bassin sédimentaire de Kairouan en direction du Nord ; à travers le Dj.
Gountasse et par conséquent un débit important devrait s'écouler en profondeur vers le Nord et alimenter la partie méridionale de la cuvette de Chougafía.

La nappe phréatique alluviale présente une eau à 2 g/l. Les calcaires crétacés au Nord et le Mio-Pliocène au Sud du bassin ont donné une eau à 0,3 g/l. Mais la délimitation du biseau salé reste à faire.

Les eaux de la nappe de Chougafía sont utilisées pour la mise en bouteille. Ces eaux sont de qualité chimique excellente, elles ont un taux de nitrates de l’ordre de 20 mg/l à Sabrine 2 et un RS < 0.3 g/l. Comparativement avec les résultats précédents la chimie des eaux de cette nappe est stable.
Chapitre 2: Aperçu de l’état de l’exploitation de la nappe en 1985 et répercussions

1. Inventaire 1985 :

Cet inventaire a été réalisé par le CRDA en 1985. Il a couvert la nappe de Sisseb el alem et a permis de répertorier plus de 868 puits sur les zones sus-mentionnées.

1.1. Données de l’inventaire :
Cet inventaire contient des données physiques et des données d’exploitation détaillées dans le Tableau 1 :

<table>
<thead>
<tr>
<th>Données physique</th>
<th>Données d’exploitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Nom du propriétaire</td>
<td>-Débit instantané</td>
</tr>
<tr>
<td>-Délégation et secteur</td>
<td>- exploitation annuel prélevé</td>
</tr>
<tr>
<td>-Coordonnées géographiques</td>
<td></td>
</tr>
<tr>
<td>-Equipement</td>
<td></td>
</tr>
<tr>
<td>-profondeur du plan d’eau</td>
<td></td>
</tr>
<tr>
<td>-Profondeur du puits</td>
<td></td>
</tr>
<tr>
<td>-tranche d’eau</td>
<td></td>
</tr>
<tr>
<td>-Margelle</td>
<td></td>
</tr>
<tr>
<td>-Diamètre</td>
<td></td>
</tr>
<tr>
<td>-résidu sec</td>
<td></td>
</tr>
</tbody>
</table>

1.1.1. Salinité :

La qualité chimique des eaux du bassin de Sisseb El Alem est généralement bonne. Toutefois, l’augmentation du débit d’exhaure des eaux souterraines à El Alem a engendré un avancement du front des eaux salées provenant de la dépression de Sbikha. En conséquence, les puits de surface auparavant exploités sont actuellement abandonnés à cause de la salinité élevée de leurs eaux. En effet, la minéralisation de ces eaux s’échelonne entre 1, 5 et 4 g/L. (kacem, al).
La salinité est présentée dans cet inventaire en termes de résidu sec. On note que la salinité moyenne de 701 puits renseignés, est de 2,5g/l

Figure 14 : Salinité des eaux des ouvrages sur la nappe de sisseb El Alem

L’hypothèse nous montre que la salinité évolue en sens inverse de la profondeur de nappe ce qui nous laisse de croire que la majorité des ouvrages dans les années 1985 étaient peu profonds et n’exploitent pas une couche profonde de la nappe.

1.1.2. Profondeur des ouvrages :

Selon l’inventaire on note que sur 858 ouvrages renseignés, on note une profondeur minimale de 0,30 m, une profondeur maximale de 40 m et une profondeur moyenne de 14,87 m.

<table>
<thead>
<tr>
<th>profondeur</th>
<th>Nombre d’ouvrages</th>
<th>Pourcentage(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 10m</td>
<td>193</td>
<td>22</td>
</tr>
<tr>
<td>(\leq 10m \text{ et } > 20m)</td>
<td>482</td>
<td>55</td>
</tr>
<tr>
<td>(\geq 20m)</td>
<td>182</td>
<td>21</td>
</tr>
</tbody>
</table>
Figure 15 : Profondeur totale des ouvrages sur la nappe de Sisseb El Alem

La profondeur des puits ne dépasse 40 m au maximum il s’agit donc des puits simples traditionnels.

Il est important de signaler que, dans le cas des puits simples ou de puits sondage, ces profondeurs ne sont pas constantes, puisque les agriculteurs, généralement, approfondissent leurs puits chaque 2 ou 3 ans en raison de la baisse de la nappe.

1.1.1. Débit instantané :

Sur 719 mesures de débits renseignées, Le débit moyen des ouvrages, est d’environ 3,59 l/s. Le débit maximal est de 13 l/s et le débit minimal est 0 l/s
1.1.2. Volume :

L’information qui semble la plus pertinente dans cet inventaire est l’évaluation du volume prélevé. Le volume annuel prélevé total de 714 puits renseignés, a été évalué à 10Mm3/an.

1.1.3. Type des puits :

Puits simple : Ce sont des puits où l’eau est puisée à la main. Ce puits est creusé entre 20 et 40 m de profondeur à la main dans un sol dit souple.

Forage : Profondeur peut atteindre 200m aussi le forage a une durée de vie beaucoup plus longue qu’un puits simple et la qualité de l’eau est meilleure, un forage peut servir pendant 20 à 40 ans.

Puits sondage : suite au rabattement rapide de nappe les agriculteurs ont passé au puits sondage. Administrativement ces puits ne dépassent pas les 50 ou 60 m, mais pratiquement, les profondeurs de ce type de puits arrivent au-delà de 100m.

1.1.4. Catégorie des puits :

L’exploitation de la nappe phréatique se fait à partir des puits de surface équipés de motopompes, pompes à bras, par bride et dalous.

Sur 824 puits renseignés, on note l’existence de 512 puis simple, 234 puits de sondage et 78 puits non exploitées (à sec, endommagés par les crues ou à cause la fortes salinité de l’eau).
1.1.5. Densité des puits :

Pour une surface de 191 ha nous avons 42 puits renseignés d’où une densité de l’ordre de 22 puits par ha.

Les données brutes extraites de cet inventaire ont été résumées dans le tableau suivant :

<table>
<thead>
<tr>
<th>Nombre total des puits</th>
<th>Type des puits</th>
<th>Débit (l/s)</th>
<th>Profondeur (m)</th>
<th>Salinité (g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Renseignés/828</td>
<td>Renseignés/719</td>
<td>Renseignés/858</td>
<td>Renseignés/701</td>
</tr>
<tr>
<td>869</td>
<td>234</td>
<td>512</td>
<td>78</td>
<td>Max 3,59</td>
</tr>
<tr>
<td></td>
<td>Min 0</td>
<td>Moy 1,47</td>
<td>Min 15,22</td>
<td>Max 38,75</td>
</tr>
<tr>
<td></td>
<td>Max 3,59</td>
<td>Min 1,47</td>
<td>Max 13,51</td>
<td>Min 0,15</td>
</tr>
<tr>
<td></td>
<td>Moy 3,59</td>
<td>Max 3,59</td>
<td>Moy 3,59</td>
<td>Max 2,5</td>
</tr>
</tbody>
</table>

L’inventaire 1985 a été réalisé par le CRDA. Cette base des données n’offre pas un inventaire exhaustif de tous les ouvrages de captage existants dans le bassin versant Nebhana. On doit signaler que cet inventaire ne couvre pas tout le bassin versant, une partie de la zone n’a pas été répertoriée.

A défaut d’autres inventaires plus récents, l’on se propose d’analyser l’impact de l’exploitation et les tendances actuelles des ressources sur la base d’une géochimique, jugée plus facile à mener.
Chapitre 3: Méthodes et outils

1 Collecte de données

1.1 Les données classiques

1.1.1 Les données inédites

Ce sont des données et des informations recueillies pour les besoins d’étude. L’observation hydrogéologique et hydrochimique de la nappe phréatique du bassin Nebhana est réalisée à partir d’un réseau de puits de surface et de piézomètres à partir desquelles on a mesuré le niveau statique et on a prélevé des échantillons d’eau pour analyse.

1.2 Les missions du terrain

1.2.1 Campagnes piézométriques

Les mesures des différents niveaux piézométriques doivent être effectuées dans des conditions de stabilisation de la nappe pour l’ensemble de la région cartographiée au cours d’une période la plus courte possible. En effet, Castany (1998) souligne que la surface piézométrique que nous mesurons, constitue la limite supérieure de la nappe. C’est une limite hydrodynamique donc en perpétuelle fluctuation. Cette limite (surface piézométrique) peut s’éléver ou s’abaisser librement dans la formation hydrogéologique perméable. En principe, dans la pratique, elles sont effectuées dans des piézomètres. Leur implantation à proximité des puits que nous voulons étudier étant très onéreuse, nous avons effectué nos mesures directement dans les différents ouvrages (puits) sélectionnés.
Pour effectuer la mesure, après la localisation (détermination des coordonnées géographiques) de l'ouvrage à l'aide du GPS, le bec de la sonde est introduit dans l'ouvrage et une fois que celui-ci atteint la surface de l'eau, la sonde émet un son et son voyant lumineux s'allume.

On peut alors lire la profondeur à laquelle se trouve le niveau de l'eau dans l'ouvrage. Ensuite, on mesure la hauteur pour déterminer le niveau réel de l'eau par rapport à la surface topographique. Puis on calcule la cote de l'eau dans l'ouvrage. Enfin dans une grille, on reporte le nom du lieu ou le numéro du puits de mesure où se trouve l'ouvrage, la hauteur de la margelle, le niveau piézométrique.

1.2.2 Echantillonnage :

L'échantillonnage est la procédure de prélèvement d'une quantité représentative d'eau à partir d'une rivière, d'un lac ou d'un puits (Rodier, 1976 et 1978).

Le choix des différents points d'échantillonnage doit répondre à plusieurs critères. Ces points doivent être représentatifs et basés sur les paramètres suivants :

- La localisation géographique
- Le niveau capté
- Etat de l’ouvrage

Selon Moll (2005), il existe plusieurs types d'échantillons : l'échantillon ponctuel, l'échantillon périodique, l'échantillon composé (pondéré ou non) et l'échantillon intégré. L'étude approfondie d'un cours d'eau ou des puits dans un bassin versant nécessite des prélèvements multiples, selon un quadrillage prédéterminé (Tardat - Henry, 1992).

pour analyse au Laboratoire des Sciences et Techniques des eaux de l’Institut National Agronomique de Tunis. Ceci dans le but de déterminer certaines caractéristiques physico-chimiques.

Figure 18: Localisation des points d’échantillonnage

1.3 Méthodes hydrochimiques

1.3.1 Représentation graphique des analyses hydrochimiques

Plusieurs types de diagrammes existent pour représenter graphiquement le faciès chimique d’une eau. Les représentations graphiques ont un intérêt majeur qui se traduit par une approche rapide des résultats analytiques en vue de caractériser facilement une eau, de suivre son évolution ou de la comparer à d’autres eaux de compositions physico-chimiques voisines ou de proximité géographique. Les diagrammes les plus couramment utilisés sont ceux de Piper (combinaison de deux diagrammes triangulaires pour les cations et anions et un diagramme en losange combinant anions et cations), et de Schoeller (concentrations équivalentes sur échelle logarithmique).

Dans cette étude on a utilisé essentiellement les deux digrammes suivants:
Le diagramme de piper

Le diagramme de Piper permet de représenter le faciès chimique des plusieurs échantillons d’eau souterraines simultanément.

Il est composé de deux triangles permettant de représenter le faciès cationiques et le faciès anionique et d’un losange synthétisant le faciès global. Le diagramme de piper représente un grand intérêt, de ce fait il est le plus utilisé pour la détermination du faciès chimique d’une eau. Il est particulièrement adapté pour étudier l’évolution du faciès des eaux lorsque la minéralisation augmente ou bien pour distinguer des groupes d’échantillons.

Figure 19: Représentation graphique du Diagramme de Piper (Freeze & Cherry, 1979)

Le diagramme de SchoëllerBerkalov

Le diagramme de SchoëllerBerkalov permet de représenter le faciès chimique de plusieurs eaux. Chaque échantillon est représenté par une ligne brisée.

La concentration de chaque élément chimique est figurée par une ligne verticale en échelle logarithmique. La ligne brisée est formée en reliant tous les points figurant les différents éléments chimiques. Un groupe d’eau de minéralité variable mais dont les proportions sont les mêmes pour les éléments dissous, donnera une famille de lignes brisées parallèles entre elles. Lorsque les lignes se croisent, un changement de faciès chimique est mis en évidence. Il est ainsi possible de visualiser à la fois le faciès chimique, comme pour le diagramme de Piper,
mais aussi la minéralisation de l’eau (sa charge dissoute), ce qui est appréciable. Toutefois, la visualisation du faciès est moins aisée qu’avec le diagramme de Piper.

Figure 20: Représentation graphique de SchoëllerBerkalov

Le logiciel utilisé : Diagrammes 5.6

Dans cette étude on a eu recours à un logiciel d’hydrochimie qui nous a facilité la réalisation de ces représentations graphiques.

Diagrammes 5.6 est un logiciel utile pour l’étude hydrochimique, utilisé pour présenter des données chimiques et des caractéristiques importantes d’un échantillon d’eau ou même d’un groupe de solutions sous forme de digrammes et des graphiques.
1.3.2 Les rapports ioniques caractéristiques

L’origine des sels dissous dans les eaux souterraines est généralement les minéraux contenus dans les roches encaissants du réservoir des formations traversées, et le mélange avec les eaux provenant des autres nappes profondes. Dans le but de mieux comprendre les processus hydrochimiques qui se déroulent dans la nappe phréatique de la moyenne vallée de la Medjerda et d’identifier l’origine de minéralisation de ces eaux on a eu recours à l’analyse des graphes des rapports ioniques tels que de $\text{SO}_4^{2-}/\text{Cl}^-$, Na^+/Cl^-, $\text{Ca}^{2+}/\text{Na}^+$, $\text{Ca}^{2+}/\text{SO}_4^{2-}$ et $\text{Na}^+/\text{SO}_4^{2-}$.

Logoiciel utilisé : EXCEL

Le logiciel Excel fait partie de la famille des logiciels de gestion des tableaux « TABLEUR »

Un tableur est un logiciel spécialisé dans le calcul et la présentation des données dans des tableaux ainsi que de présenter des résultats de calcules sous forme de graphiques. Un tableur est utilisé dans plusieurs domaines qui font beaucoup appel au calcul, y compris l’économie, les sciences, la statistique…

En effet, un tableur est un logiciel qui permet de gérer des données présentées dans un tableau. (Calcul, classement, testes, présentation graphiques de données….). Afin de déterminer les relations de différentes séries de données d’un tableau, l’Excel permet de créer un des graphiques sont utilisés pour afficher des données d’un tableau.
1.4 Mise en place d'un SIG

Dans le but de la mise en place d'une base de données hydrgéologique et hydrochimique de la nappe phréatique du bassin de Moulareas-Redeyef sous forme digitale et ainsi l’utiliser et l’exploiter pour la cartographie, on a eu recours à la mise en place d’un Système d’Information Géographique (SIG) de la nappe objet de cette étude.

1.4.1 Définition du SIG

Il existe plusieurs définitions d’un système d’information géographique (S.I.G ou G.I.S), celle proposée par ESRI(1992) est la suivante : « Un S.I.G est un ensemble constitué par le matériel, les logiciels, les données géographiques et les ressources humaines misent au point pour saisir, stocker en mémoire, mettre à jour, transformer, analyser et représenter toutes sortes d’information spatiales à référence géographique ».

1.4.1.1 Composantes d’un SIG

Un Système d’Information Géographique est composé par :

- Sa Base de Données Géographiques BDG : Une base de données est une entité dans laquelle il est possible de stocker des données de façon structurée et avec le moins de redondance possible. Ces données doivent pouvoir utiliser par des programmes, par des utilisateurs différents.

- Son Système de Gestion de Base de Données SGBD

De nombreux SIG s’appuient sur des capacités des SGBD pour organiser et localiser leurs données. Mais le rôle des SGBD s’arrête là, car ils ne disposent pas des outils de visualisation et d’analyse propre aux SIG.

1.4.1.2 Bases de données intégrées dans le présent travail

Les données à manipuler pour la mise en place d’un SIG dans le contexte de la gestion des eaux souterraines peuvent être de deux types : les données spatiales et les données descriptives.

- Les données descriptives

Ce sont les données descriptives du réseau piézométrique et des points d’eaux échantillonnées. Ces données sont organisées sous formes des tables qui comportent le numéro d’ordre du puits ou piézomètre, le nom de propriétaire, les coordonnées (en
Lambert), le niveau statique d’eau (H), l’altitude du puits ou piézomètre (z), les niveaux piézométriques, et les données hydrochimiques.

- **Les données spatiales**

Ce sont les données graphiques scannées: cartes topographiques et cartes géologiques.

1.4.2 **Organisation de la base des données spatiales : Géoréférencement des cartes**

1.4.2.1 **Définition**

Le géoréférencement ou la correction géométrique est une procédure qui met en position un document cartographique numérisé dans son cadre géographique adéquat en choisissant un système de référence soit géographique ou cartésien (projection).

Pour pouvoir effectuer un géoréférencement d'une image, il est obligatoire d'avoir une idée précise sur :

- L’échelle de réduction de la carte ;
- Le système de projection de la carte.

Les principales étapes du géoréférencement sont résumées dans ce qui suit :

- Le choix des points dits amers ou tics ou de contrôles répertoriés d’une façon homogène sur le document scanné à corriger et dont les coordonnées sont connues dans le système de projection adopté. Le nombre de ces points dépend du degré de la transformation polynomiale de la correction géométrique adoptée.

- La qualité de la correction effectuée est vérifiée à partir d’un fichier de points amers affichant l’erreur quadratique moyenne (RMS Error) dont elle doit avoir la valeur la plus faible possible pour valider le géoréférencement.

1.4.2.2 **Les données géo référenciées**

Les cartes nécessaires pour le traitement de notre projet hydrogéologique sont les cartes topographiques, géologiques et pédologiques. Mais ces cartes présentent des systèmes géographiques différents donc pour pouvoir manipuler des informations numérisées et géoréférenciées correctement, il est obligatoire d'unifier le système de projection on a donc eu recours à des conversions d'un système à un autre.

Le système géographique adopté pour le géoréférencement de toutes ces cartes est la projection cartésienne Lambert -Tunisie.
1.4.3 Cartographie

Les données hydrogéologiques et hydrochimiques acquises sont exploitées dans un système d'information géographique (SIG) celle-ci permet de procéder à une analyse spatiale des données primaires et de générer des couches d'informations secondaires telles que des cartes thématiques, des cartes piézométriques, et des cartes hydrochimiques.

➢ **Logiciel utilisé : ArcGIS v.10.1**

On a pu effectuer toutes les tâches SIG, de la plus simple à la plus avancée, y compris la gestion des données, le géoréférencement, la cartographie, l'analyse géographique et statistique, la mise à jour des données (spatiales, géographiques…) et le géotraitement…etc, en appelant les trois applications de bureau ArcGIS v.10 : ArcCatalog, ArcMap et ArcToolbox, pour effectuer le travail.

ArcCatalog : c’est l’application permettant de gérer les stocks de données et la conception des bases de données, ainsi que d’enregistrer et de visualiser les métadonnées.

ArcMap : il est utilisé pour toutes les tâches de cartographie et de mise à jour ainsi que pour les analyses associées aux cartes.

ArcToolbox : il est utilisé pour la conversion des données et le géotraitement.

Dans notre projet, on a créé :

➢ **Des cartes thématiques**
 - La limite du bassin versant
La limite de la nappe
- La carte du réseau hydrographique

Un Modèle numérique de terrain (MNT) :
Dans les buts de connaître la topographie de la zone d'étude et principalement de connaître l’altitude des pièzomètres et des puits d’eaux dont nous avons mesuré leur niveau statique (ne sont pas nivelés c'est-à-dire leur altitude Z est non connu) on a eu recours à la génération d’un MNT.

Définition d’un MNT
Le modèle numérique de terrain fournit une information altimétrique, c’est une représentation numérique simplifiée de la surface du territoire. Intégrée dans le SIG cette information joue un rôle très important dans les méthodes d’analyse spatiale en particulier pour la prise en compte de la morphologie du terrain. Il existe de nombreuses représentations possibles des surfaces sous forme de MNT dans les SIG, les deux formes essentielles sont : Raster et Vecteur.

MNT réalisé
Le modèle numérique de terrain (MNT) généré dans ce travail est réalisé suite à l’extraction des courbes de niveau à partir des Images SRTM (Pixel = 90m) avec le logiciel Global Mapper. L’avantage de ce programme est de donner des courbes de niveau avec une équidistance variable (on a choisi 5m).
Il est réalisé au moyen de l’extension ‘Spatial Analyst’ du Logiciel Arc GIS.
Ce MNT vecteur est produit au moyen de la méthode d’interpolation, ‘de découpage par les triangles irréguliers TIN (TriangulatedIrregular Network), entre les données fournies par les cartes thématiques des courbes de niveau, des points côtés et de la délimitation du bassin versant.
Figure 23: Projet SIG mis en place

- La carte hydrogéologique ou piézométrique

La carte piézométrique, en courbes hydro-isohypses, synthèse essentielle de l’étude hydrogéologique, c’est l’interpolation spatiale des niveaux piézométriques schématisant le comportement hydrodynamique de l’aquifère.

Les cartes piézométriques classiques ont été élaborées au moyen d’une interpolation entre trois points (la méthode de triangle). De nos jours et avec le progrès du monde informatique et essentiellement SIG, cette carte peut être effectuée au moyen du logiciel SIG qui offre des choix multiples des méthodes d’interpolation.

Cependant, l’interpolation spatiale est une procédure qui consiste à estimer la valeur d’un attribut pour des sites non échantillonnés. Dans ce travail, nous avons utilisé l’interpolation spatiale pour mettre en œuvre des algorithmes mathématiques ou probabilistes afin d’estimer la valeur du niveau piézométrique entre les piézomètres.

- Des cartes hydrochimiques

Dans le but d’identifier la caractérisation et l’extension spatiale des différents éléments chimiques analysés des eaux échantillonnées du système aquifère, on a eu recours à l’élaboration des cartes hydrochimiques ou dites aussi des cartes en isovaleurs ou en iso-concentration en éléments chimiques.
Ces cartes sont de même élaborées en utilisant l’extension *Spatial Analyst tools* sous le module *Interpolation*.

Pour ces cartes on a utilisé l’interpolation spatiale pour mettre en œuvre des algorithmes mathématiques afin d’estimer les teneurs en éléments chimiques entre les points d’échantillonnages.

Les cartes hydrochimiques réalisées dans ce travail sont :

- La carte de la salinité;
- La carte de la répartition des chlorures ;
- La carte de la répartition du Sodium ;
- La carte de la répartition des sulfates ;
- La carte de la répartition du calcium ;
- La carte de la répartition du Magnésium ;
1. **Etude géochimique**

Les résultats des analyses géochimiques sont représentés dans le tableau suivant :

Chapitre 4: Résultats et discussions
Tableau 3 : les analyses physico-chimiques des eaux du bassin de Nebhana

<p>| Nom | Y 1 | Y 2 | Y 3 | Y 4 | Y 5 | Y 6 | Y 7 | Y 8 | Y 11 | Y 12 | Y 13 | Y 14 | Y 15 | Y 16 | Y 17 | Y 18 | Norme Tunisienne de Potabilité NT 09.14 (1983) |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---|
| salinité (g/l) | 2,805 | 1,731 | 1,695 | 1,695 | 1,210 | 1,124 | 3,847 | 1,852 | 1,488 | 1,092 | 2,831 | 2,873 | 1,167 | 1,852 | 1,758 | < 2,5 |
| HCO₃⁻ (mg/L) | 225,7 | 213,5 | 207,4 | 231,8 | 219,6 | 264,7 | 168,7 | 168,7 | 219,6 | 229,7 | 237,9 | 256,2 | 244 | 256,2 | 231,8 | 152,5 | 600 |
| Cl⁻ (mg/L) | 181,9 | 144,66| 257,4 | 246,55| 358,28| 377,99| 347,99| 326,96| 224,98| 368,0 | 227,14| 250,87| 454,6 | 240,84| 238,97| 600 |
| Na⁺ (mg/L) | 130,5 | 116,82| 197,7 | 195,37| 352,25| 228,65| 203,7 | 193,5 | 151,23| 84,48 | 245,8 | 137,0 | 227,4 | 233,4 | 231,2 | 140,66| 150 |
| Mg²⁺ (mg/L) | 39,04 | 35,83 | 25,16 | 27,24 | 92,41 | 87,74 | 32,35 | 32,94 | 35,82 | 46,21 | 90,09 | 30,89 | 34,52 | 37,22 | 33,13 | 150 |
| Ca²⁺ (mg/L) | 51,52 | 48,63 | 33,77 | 33,52 | 97,14 | 72,89 | 56,04 | 51,08 | 55,21 | 48,62 | 72,94 | 51,79 | 50,83 | 79,19 | 30,53 | 47,94 | 300 |
| SO₄²⁻ (mg/L) | 343,12 | 310,88| 140,96| 128,27| 438,79| 340,61| 217,94| 231,28| 336,87| 176,29| 335,61| 286,27| 259,08| 284,18| 157,32| 284,88| 600 |
| K⁺ (mg/L) | 3,43 | 3,33 | 3,23 | 3,13 | 3,03 | 3,7 | 2,13 | 4,12 | 3,33 | 3,23 | 3,13 | 3,03 | 2,93 | 3,6 | 2,03 | 4,02 |
| PO₄³⁻ (mg/L) | 0,3258| 0,3224| 0,3074| 0,4589| 0,2368| 0,3391| 0,2411| 0,2804| 0,4457| 0,4183| 0,3119| 0,5087| 0,2088| 0,4228| 0,3874| 0,5685| - |
| NO₃⁻ (mg/L) | 9,637 | 9,842 | 0,2548| 0,7602| 16,52 | 2,9823| 4,2732| 1,837 | 2,1971| 17,22 | 2,5704| 13,325| 4,2029| 11,725| 1,5203| - |
| F⁻ (mg/L) | 0,6496| 0,5808| 0,7516| 0,757 | 1,261 | 0,5355| 0,421 | 0,4974| 0,7482| 0,8886| 0,6646| 0,9968| 1,419 | 1,0078| 0,6624| < 1,2 |</p>
<table>
<thead>
<tr>
<th>Nom</th>
<th>Y 19</th>
<th>Y 20</th>
<th>Y 21</th>
<th>Y 22</th>
<th>Y 23</th>
<th>Y 24</th>
<th>Y 25</th>
<th>Y 26</th>
<th>Y 27</th>
<th>Y 28</th>
<th>Y 29</th>
<th>Y 30</th>
<th>Y 31</th>
<th>Y 32</th>
<th>Y 33</th>
<th>Y 34</th>
<th>Y 35</th>
<th>Y 36</th>
<th>Y 37</th>
<th>Y 38</th>
<th>Y 39</th>
<th>Y 40</th>
<th>Y 41</th>
<th>Y 42</th>
<th>Y 43</th>
<th>Y 44</th>
<th>Norme Tunisienne de Potabilité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salinité (g/l)</td>
<td>1,167</td>
<td>2,731</td>
<td>1,911</td>
<td>1,484</td>
<td>1,519</td>
<td>1,362</td>
<td>2,779</td>
<td>2,017</td>
<td>1,789</td>
<td>1,044</td>
<td>1,586</td>
<td>1,752</td>
<td>1,895</td>
<td>2,868</td>
<td>1,889</td>
<td>< 2.5</td>
<td></td>
</tr>
<tr>
<td>HCO3--</td>
<td>219,6</td>
<td>244</td>
<td>213,5</td>
<td>213,5</td>
<td>189</td>
<td>226</td>
<td>220</td>
<td>214</td>
<td>223</td>
<td>124</td>
<td>158</td>
<td>234</td>
<td>268</td>
<td>223</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Cl (mg/L)</td>
<td>356,635</td>
<td>139,99</td>
<td>204,495</td>
<td>89,39</td>
<td>163,78</td>
<td>461,75</td>
<td>220,02</td>
<td>337,85</td>
<td>190,385</td>
<td>229,23</td>
<td>218,145</td>
<td>229,055</td>
<td>293,93</td>
<td>323,285</td>
<td>355,39</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Na⁺ (mg/L)</td>
<td>326,87</td>
<td>180,985</td>
<td>224,53</td>
<td>106,31</td>
<td>93,415</td>
<td>369,495</td>
<td>208,07</td>
<td>259,035</td>
<td>169,3</td>
<td>180,081</td>
<td>104,085</td>
<td>102,125</td>
<td>115,42</td>
<td>180,31</td>
<td>200,895</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Mg²⁺ (mg/L)</td>
<td>88,23</td>
<td>28,34</td>
<td>47,725</td>
<td>27,61</td>
<td>29,125</td>
<td>108,305</td>
<td>49,405</td>
<td>42,32</td>
<td>83,685</td>
<td>25,075</td>
<td>46,515</td>
<td>71,8</td>
<td>35,64</td>
<td>34,035</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Ca²⁺ (mg/L)</td>
<td>58,92</td>
<td>43,885</td>
<td>68,525</td>
<td>37,125</td>
<td>45,61</td>
<td>93,9909</td>
<td>46,9312</td>
<td>71,5406</td>
<td>50,4656</td>
<td>93,8295</td>
<td>31,4442</td>
<td>40,0048</td>
<td>56,7812</td>
<td>41,8563</td>
<td>44,6835</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>SO₄²⁻ (mg/L)</td>
<td>280,655</td>
<td>235,155</td>
<td>366,765</td>
<td>136,375</td>
<td>188,65</td>
<td>448,65</td>
<td>215,555</td>
<td>311,835</td>
<td>278,11</td>
<td>461,3</td>
<td>102,13</td>
<td>261,64</td>
<td>240,39</td>
<td>185,33</td>
<td>197,455</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>K⁺ (mg/L)</td>
<td>5,23</td>
<td>5</td>
<td>4,24</td>
<td>2,36</td>
<td>3,21</td>
<td>3,9029</td>
<td>2,9334</td>
<td>3,253</td>
<td>8,0544</td>
<td>3,0258</td>
<td>4,6629</td>
<td>8,0866</td>
<td>2,847</td>
<td>2,839</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>PO₄³⁻ (mg/L)</td>
<td>0,4228</td>
<td>0,2623</td>
<td>0,5334</td>
<td>0,4533</td>
<td>0,2722</td>
<td>0,4722</td>
<td>0,6722</td>
<td>0,8722</td>
<td>1,0722</td>
<td>1,2722</td>
<td>1,4722</td>
<td>1,6722</td>
<td>1,8722</td>
<td>2,0722</td>
<td>2,2722</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NO₃⁻ (mg/L)</td>
<td>80,42</td>
<td>30,395</td>
<td>13,635</td>
<td>1,2832</td>
<td>1,36</td>
<td>20,84</td>
<td>15,62</td>
<td>18,33</td>
<td>13,125</td>
<td>1,8666</td>
<td>67,55</td>
<td>5,4149</td>
<td>39,815</td>
<td>3,8925</td>
<td>8,9176</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>F (mg/L)</td>
<td>1,8012</td>
<td>1,4034</td>
<td>1,1831</td>
<td>0,7672</td>
<td>0,4462</td>
<td>4,15</td>
<td>0,8915</td>
<td>0,8182</td>
<td>0,8051</td>
<td>0,7053</td>
<td>0,2258</td>
<td>0,3154</td>
<td>0,3647</td>
<td>1,2789</td>
<td>0,6098</td>
<td>< 1,2</td>
<td></td>
</tr>
</tbody>
</table>
1.1. Les cartes de distribution spatiales

1.1.1. La distribution de la salinité

La salinité des eaux souterraines oscille entre 1,04 g/l et 3,84 g/l. D’après la carte de répartition spatiale de la salinité (Figure 24) la minéralisation totale augmente généralement du Nord vers le Sud subdivisant la zone d’étude en deux parties :

- La plus forte salinité est enregistrée au niveau de SebkhetElkalbia où la minéralisation totale atteint son maximum (Y8, Y1 et Y30).
- Les faibles salinités s’observent au niveau de la bordure Nord. Les valeurs de la salinité augmentent à partir des bordures Nord vers le Sud de ce bassin.

Figure 24: carte de répartition spatiale de la salinité des eaux souterraine du bassin Nebhana
1.1.2. La distribution spatiale de Ca$^{2+}$

Les concentrations de calcium varient entre 30 mg/l et 97 mg/l. La répartition spatiale des concentrations de calcium des eaux souterraines (Figure 25) montre une évolution inversement proportionnelle avec la salinité. Cependant, on a :

- Les fortes valeurs sont enregistrées au Nord (97 mg/l).
- Dans le reste du bassin, les teneurs de Ca$^{2+}$ sont inférieures à 50 mg/l avec un minimum enregistré dans les eaux de la région de M’tbassta.

![Figure 25: carte de répartition spatiale du Calcium](image-url)
1.1.3. La distribution spatiale de Mg$^{2+}$

Les eaux souterraines du bassin Nebhana présentent des teneurs en magnésium qui varient entre 25 mg/l et 108 mg/l. La variation spatiale des teneurs Mg$^{2+}$ montre que (Figure 26):

- Les faibles valeurs de Mg$^{2+}$ qui caractérisent le reste du bassin, sont relativement faibles avec des teneurs variant entre 30 mg/l et 50 mg/l.

![Figure 26: carte de distribution spatiale de Mg$^{2+}$](image)

1.1.4. La distribution spatiale de Cl$^-$

Les concentrations des chlorures dans les eaux du bassin Nebhana varient entre 89 mg/l et 461 mg/l. La répartition spatiale des teneurs en Cl$^-$ (Figure 27) présente une évolution évolutive similaire à celle de sodium.
Cependant on a :

- Les fortes valeurs supérieures à 200 mg/l sont remarquées aux zones de recharge. Ceci est expliqué par l’infiltration des eaux de pluie après dissolution des sols salés qui caractérisent cette zone.
- Les valeurs inférieures à 200 mg/l sont enregistrées dans les zones où l’infiltration demeure négligeable. Ceci est en relation avec l’infiltration d’eaux faiblement chargées en chlorures le long des oueds et des sources.

Figure 27: carte de répartition spatiale des Chlorures des eaux souterraines

1.1.5. La distribution spatiale de Na⁺

On remarque que les valeurs du sodium varient entre 84 mg/l jusqu’à 369 mg/l. Ces valeurs sont fortement liées à la nature géologique des formations traversées ainsi que les exutoires et les zones de recharge de la nappe. Les fortes valeurs sont enregistrées au nord de Sebkhet El Kelbia de l’ordre de 369 mg/l.
1.1.6. La distribution spatiale de SO_4^{2-}

Les concentrations des sulfates dans les eaux souterraines du bassin Nebhana varient entre 102 mg/l à 461 mg/l. Les sulfates étant les anions les plus dominants. Ceci est expliqué par une forte abondance de minéraux sulfatés dans les formations géologiques traversée. La carte de répartition spatiale des teneurs de sulfates (Figure 29) montre une tendance évolutionne avec celle de la salinité. En effet, les fortes valeurs sont remarquées aux niveaux des oueds expliquées par la dissolution des intercalations gypseuses de la formation Fortuna et de la formation El Haria affleurantes au niveau des zones de recharge des systèmes aquifères.
1.1.7. La distribution spatiale de F-

On remarque que les valeurs du fluor varient entre 0,226mg/l jusqu’à 4,15mg/l. Ces valeurs sont fortement liées à la nature géologique des formations traversées ainsi que les exutoires et les zones de recharge de la nappe. Les fortes valeurs sont enregistrées au nord de Sebkhet El Kelbia de l’ordre de 369 mg/l.
1.1.8. La distribution spatiale de K⁺

On remarque que les valeurs du potassium varient entre 2,03mg/l jusqu’à 8,08mg/l. Les fortes valeurs sont observées dans les zones de recharge et au niveau des lits des oueds. Cela peut être relié à la nature des formations traversées riche en calcaire.
1.2. Origine des éléments chimiques

La détermination de l’origine de la minéralisation des eaux du système aquifère est assurée en établissant d’une part, les relations entre les éléments majeurs (Cl^-, SO_4^{2-}, Na^+, et Ca^{2+}) et la minéralisation totale (TDS), et les relations entre ces principaux éléments d’autre part.

1.2.1. Diagramme de Piper

La distribution des teneurs en éléments majeurs dans le diagramme de Piper permettent de distinguer les principaux faciès chimiques présentent dans les eaux du bassin de Nebhana. Les eaux souterraines du bassin Nebhana présentent un faciès généralement mixte à tendance Chloruré et sulfatée calcique et magnésienne et Chlorurée sodique et potassique.
1.2.2. Diagramme de Schoëller- Berkaloff

Le diagramme de Schoëller- Berkaloff permet de représenter le faciès chimique de plusieurs échantillons d’eaux. Chaque échantillon est représenté par une ligne brisée. Le diagramme tracé (Figure 33) confirme la dominance du faciès Chloruré et sulfatée calcique et magnésienne et Chlorurée sodique et potassique permettant d’exprimer que la minéralisation des eaux est liée aux ions Cl-, Na+, SO4²-, Ca2+, K+. Un certain parallélisme entre les lignes représentant la majorité des éléments majeurs a été observé, ce qui s’explique par une même évolution du chimisme de ces éléments.

Figure 32 : diagramme de piper des eaux du bassin Nebhana
Figure 33: Diagramme de Schoëller-Berkaloff
1.2.3. Diagramme de Wilcox

Ce diagramme est basé sur les valeurs du rapport d'absorption en sodium (SAR) et de la conductivité électrique des ions contenus dans l'eau. L'objectif était de représenter les échantillons sur le diagramme de Wilcox afin de faciliter la caractérisation des eaux profondes sur leur aptitude à l'irrigation, mais il n'était disponible que la valeur de conductivité de quelques échantillons. C'est alors qu'on a tenté de retrouver par calcul théorique les conductivités des échantillons à partir des conductivités équivalentes des différents ions majeurs analysés (Na\(^+\), K\(^+\), Ca\(^{2+}\), Mg\(^{2+}\), Cl\(^-\), SO\(_4\)^{2-}\), HCO\(_3\)^{-}) à 25°C d'après la méthode décrite par Hölting (1996).

Cela nous a permis de classer les eaux souterraines du bassin Nebhana en trois groupes :

- G1 : de qualité bonne
- G2 : de qualité admissible
- G3 : de qualité médiocre

![Diagramme de Wilcox des eaux souterraines du bassin Nebhana](image)

Figure 34: Diagramme de Wilcox des eaux souterraines du bassin Nebhana
1.2.4. Corrélation entre résidu sec et les éléments majeurs

Le résidu sec exprime la charge saline de l’eau. Sa corrélation avec les différents ions permet de déterminer les éléments chimiques qui participent à l’acquisition de la minéralisation totale pour en déduire l’origine de la salinisation.

Les chlorures et le sodium présentent une bonne corrélation avec le résidu sec (RS) indiquant leur contribution à la salinisation des eaux souterraines. Il s’agit probablement d’une dissolution de l’halite.

La grande majorité des échantillons montre une bonne corrélation entre le calcium, le sulfate, le magnésium et le résidu sec. Ainsi, ces éléments jouent un rôle important dans l’acquisition de la charge saline des eaux souterraines du bassin Nebhana.

Cependant, le bicarbonate montre une mauvaise corrélation avec le résidu sec. Ceci indique que cet élément n’intervient pratiquement pas dans les mécanismes de la minéralisation des eaux.

Figure 35: Evolution des teneurs de Cl- en fonction de la salinité.
Figure 36: Evolution des teneurs de SO$_4^{2-}$ en fonction de la salinité.

Figure 37: Evolution des teneurs de HCO$_3^-$ en fonction de la salinité.

Figure 38: Evolution des teneurs de Na$^+$ en fonction de la salinité.
Figure 39: Evolution des teneurs de K^+ en fonction de la salinité

$y = 26,894x + 1012,3$
$R^2 = 0,0304$

Figure 40: Evolution des teneurs de Mg^{2+} en fonction de la salinité

$y = 7,7356x + 733,61$
$R^2 = 0,8185$

Figure 41: Evolution des teneurs de Ca^{2+} en fonction de la salinité

$y = 10,191x + 550,18$
$R^2 = 0,7568$
1.2.5. Corrélation entre les éléments majeurs

1.2.5.1. Corrélation Ca$^{2+}$/HCO$_3^-$

Le diagramme représentatif de l’évolution de Ca$^{2+}$ en fonction de HCO$_3^-$ montre une mauvaise corrélation entre ces deux éléments majeurs avec un coefficient de corrélation voisin de 0,034. En effet, la grande majorité des points d’eau forme un nuage de points placé au-dessous de la droite de pente 1. Cette disposition exclut l’existence d’une origine commune des ions Ca$^{2+}$ et HCO$_3^-$ en relation avec la dissolution des minéraux carbonatés (calcite, Aragonite, dolomite). Les ions calcium proviennent du mécanisme de dissolution de gypse et de l’anhydrite lors du passage des eaux sous-saturées en Ca$^{2+}$ par les terrains gypseux. En effet l’excès en Ca$^{2+}$ est certifié par les réactions d’échange de base avec les minéraux argileux qui affectent les eaux du bassin Nebhana pendant l’infiltration des eaux de pluie et durant leur séjour.

![Figure 42: Evolution des teneurs de HCO$_3^-$ en fonction de la salinité](image)

1.2.6. Corrélation Na$^+$/Cl$^-$

La majorité des échantillons montrent une bonne corrélation entre ces deux ions avec un coefficient de corrélation voisin de 0,822(Figure40). Cet argument est dû à une source commune du Sodium et du Chlorure. Ceci s’explique par la dissolution de l’halite (NaCl) au cours du transit des eaux à travers la zone non saturée et pendant leur séjour dans les niveaux aquifères.
L’ion \(\text{Na}^+ \) provient également des phénomènes d’échange de bases au niveau des argiles présentes dans les horizons sableux. Cette dernière est logée dans les séries l’aquifère argilo-gréseuses.

Figure 43: Corrélation entre Cl\(-\) et Na\(^+\)

1.2.7. Corrélation Mg\(^{2+}\)/Ca\(^{2+}\)

La quasi-totalité des points s’inscrivent sur la droite de pente 0,720. Ceci témoigne d’une origine commune de ces ions qui est probablement liée à l’abondance des minéraux argileux riches en (Ca\(^{2+}\) et Mg\(^{2+}\)) et de calcaires argileux localisés dans les stratigraphies de la formation El Haria et d’autre part on peut expliquer cela par la dissolution des sables silteux argileux gypsifères, appartenant aux séries stratigraphiques de la formation Ségui attribué au Miocène supérieur. Pour les points d’eaux placées au-dessous de la droite montre que les teneurs en Ca\(^{2+}\) sont donc en excès par rapport aux teneurs en Mg\(^{2+}\). Ceci peut être expliqué par le mécanisme de dissolution du gypse et de l’anhydride.
1.2.8. Corrélation Ca^{2+} et SO_4^{2-}

La corrélation entre les ions Ca^{2+} et SO_4^{2-} permet de classer les points d’eau en trois catégories distincts.

- **la première catégorie**:

 Le rapport Ca^{2+}/SO_4^{2-} montre une quasi-totalité de ces points s’inscrivent sur la droite de pente 1. Ceci témoigne d’une origine commune de ces ions qui est probablement liée à la dissolution de l’anhydrite, du gypse, des dolomies et du calcaire.

- **La deuxième catégorie**:

 Cette catégorie montre l’évolution de l’élément Ca^{2+} en fonction de SO_4^{2-} une corrélation linéaire mais les points d’eau se placent au-dessous de la droite de pente 1. Les teneurs en SO_4^{2-} sont donc en excès par rapport aux teneurs en Ca^{2+}. Ceci peut être expliqué par le mécanisme d’échange de base sont mis en évidence par la relation $[(Ca^{2+} + Mg^{2+})- (HCO_3^- + SO_4^{2-})] vs (Na^+ + K^+- Cl^-)$ lié à l’abondance des minéraux argileux riches en Ca^{2+} et Mg^{2+}.

 Dans certain minéraux appartenant à la famille des micas, les cations compensateurs de charges (ils sont appelés cations échangeables) sont piégés dans les cavités pseudo hexagonales délimitées par des atomes d’oxygène appartenant à des feuilles de minéraux riches. Les derniers ont la propriété d’échanger leurs cations initiaux avec ceux d’une solution saline lorsqu’ils sont placés au contact de cette solution.

Figure 44: Corrélation entre Cl- et Na+-

![Graphique de corrélation entre Mg++ et Ca++]
Les points d’eaux de la deuxième catégorie sont inversement corrélés ce qui permet de distinguer nettement les échanges de base avec les minéraux argileux qui affectent les eaux pendant l’infiltration des eaux de pluie et durant leur séjour au sein de l’aquifère lui-même.

➢ **La troisième catégorie:**

Le nuage de points qui sont éloignés de la droite de pente 1 témoigne de l’absence de toute corrélation entre Ca\(^{2+}\) et SO\(_{4}^{2-}\) indique qu’il n’y a pratiquement pas de contribution du mécanisme de dissolution du gypse (CaSO\(_{4}\)) et de l’anhydrite avec l’absence de toute réaction d’échange de base.

![Figure 45: Corrélation entre Ca\(^{2+}\) et SO\(_{4}^{2-}\)](image)

1.2.9. Corrélation Mg\(^{2+}\) et SO\(_{4}^{2-}\)

Les échantillons montrent une bonne corrélation entre ces deux ions avec un coefficient de corrélation égale à 0,871. Ceci témoigne d’une origine commune de ces ions qui est probablement liée à la dissolution le sulfate de magnésium (MgSO\(_{4}\)) qui se caractérise par sa grande solubilité par apport autre minéraux riche au magnésium comme la dolomie.
Figure 46: Corrélation entre Mg2+ et SO42-

Figure 47: indice de saturation de l’anhydrite

Figure 48: indice de saturation de l’aragonite
Figure 49: indice de saturation du Calcite

Figure 50: indice de saturation de Dolomite

Figure 51: indice de saturation du Gypse
2 Étude géostatistique

2.1 Matrice de corrélation :
La matrice de corrélation (Tableau4), entre les 11 variables physico-chimiques, caractérisant les eaux souterraines prélevés de 44 points d’eau étudiés au niveau du bassin de Nebhana montre une bonne corrélation entre les Sodium (Na\(^+\)) et les Chlorures (Cl\(^-\)) avec un coefficient de corrélation de l’ordre de 0,6. Ceci favorise l’hypothèse de l’origine commune de ces deux ions qui peut être la dissolution de l’halite (Na Cl) au cours du transit des eaux à travers la zone non saturée et pendant leur séjour dans les niveaux aquifères. Des fortes corrélations sont distinguées aussi entre les éléments Na\(^+\), Mg\(^{2+}\) et SO\(_{4}^{2-}\). En effet, les Sodium peuvent provenir également des phénomènes d’échange de bases au niveau des intercalations argileuses dans les horizons sableux de la formation Fortuna.

Les calciums (Ca\(^{2+}\)) montrent une faible corrélation négative aux bicarbonates (HCO\(_{3}^{-}\)). Cette situation élimine l’hypothèse d’une origine commune des ions Ca\(^{2+}\) et HCO\(_{3}^{-}\) en relation avec la dissolution des minéraux carbonatés (calcite, Aragonite, dolomite). Mais, Les fortes corrélations entre les éléments Ca\(^{2+}\), Mg\(^{2+}\) et SO\(_{4}^{2-}\) (successivement : 0,58 et 0,51) montrent que l’origine des calciums peut être ; soit la dissolution des anhydrites et des gypses lors du passage des eaux sous-saturées en Ca\(^{2+}\) par les terrains silteux argileux gypsière caractéristique stratigraphique de la formation ‘Ségui’, soit les réactions d’échange de base qui se produisent lors de l’infiltration des eaux météorologiques et leur interaction avec les niveaux argileux.

- les ions SO\(_{4}^{2-}\) et Mg\(^{2+}\)montrent une bonne corrélation entre eux ces deux ions avec un coefficient de corrélation égal à 0,61. Ceci témoigne d’une origine commune de ces ions qui peut être liée à la dissolution de sulfate de magnésium (MgSO\(_{4}\)) qui se caractérise par sa
solubilité importante par rapport aux autres minéraux riches au magnésium comme la dolomie.

Tableau 4: Matrice de corrélation des paramètres physico-chimiques étudiés

<table>
<thead>
<tr>
<th></th>
<th>RS</th>
<th>Cl</th>
<th>HCO₃</th>
<th>Ca</th>
<th>Na</th>
<th>Mg</th>
<th>K</th>
<th>SO₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>0.88</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCO₃</td>
<td>0.26</td>
<td>0.24</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>0.57</td>
<td>0.36</td>
<td>-0.03</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>0.67</td>
<td>0.59</td>
<td>0.26</td>
<td>0.65</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>0.92</td>
<td>0.79</td>
<td>0.35</td>
<td>0.58</td>
<td>0.68</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0.25</td>
<td>0.29</td>
<td>0.31</td>
<td>0.12</td>
<td>0.34</td>
<td>0.24</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>SO₄</td>
<td>0.70</td>
<td>0.66</td>
<td>0.13</td>
<td>0.51</td>
<td>0.70</td>
<td>0.61</td>
<td>-0.05</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Enfin, cette matrice montre des forts coefficients de corrélation entre le variables expliqué (résidu sec : RS) et 6 variables explicatives (Cl⁻, Ca²⁺, Na⁺, Mg²⁺ et SO₄²⁻) dont les coefficients de corrélation varient entre 0,61 et 0,92. En effet, ces variables vont être adoptés comme étant principales pour l’analyse en composantes principales (ACP) et les restants vont être considérés comme supplémentaires.

2.2 Analyse en Composantes Principales (ACP):

L’analyse en composantes principale est établie par le biais du l’outil d’analyse statistique SPSS, pour 11 variables et 44 individus (puits de surface). Le tableau 5 présente les valeurs propres, les pourcentages de variance expliquée ainsi que celui de la variance cumulée pour chaque dimension factorielle responsable de la distribution de la charge saline (Rs) dans les eaux souterraines du bassin de Nebhana.

Tableau 5: valeurs propres de trois premières dimensions de l’ACP

<table>
<thead>
<tr>
<th></th>
<th>Dim 1</th>
<th>Dim 2</th>
<th>Dim 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur propre</td>
<td>4.765</td>
<td>0.766</td>
<td>0.577</td>
</tr>
<tr>
<td>% Variance</td>
<td>68.08</td>
<td>10.95</td>
<td>8.25</td>
</tr>
<tr>
<td>Cumul</td>
<td>68.08</td>
<td>79.03</td>
<td>87.28</td>
</tr>
</tbody>
</table>

L’examen détaillé dela répartition des variables adoptés sur le premier plan de l’ACP (Figure53), qui représente 79 % de la variance totale, montre que la première dimension (Dim 1) individualise l’effet des éléments : calcium, sulfates, chlorure, magnésium, sodium et TH, qui dévoilent des bonnes corrélations avec le variable expliqué (résidus sec : RS) indiquant la
charge saline des eaux souterraines au niveau du bassin Nebhana. En effet, Cette bonne corrélation avec les différents éléments (Ca, Na, Mg, Cl et SO4) reflète leur contribution à l’acquisition de la minéralisation totale pour en déduire l’origine de la salinisation, qui s’agit probablement de la dissolution des évaporites chlorurées et du gypse ou bien de phénomène du dé-dolomitisation comme en témoignent la sous-saturation des eaux du bassin en gypse très variable d’un point à l’autre et dépend largement du matériau aquifère, leur sursaturation en calcite et dolomite. Cependant, le bicarbonate et le potassium montrent une très faible corrélation avec le résidu sec (Rs). Ceci indique que ces éléments n’interviennent pratiquement pas dans les mécanismes de la minéralisation des eaux. D’autre part, ce graphique montre que le pH est inversement corrélé à la charge saline des eaux souterraines dans la zone d’étude. En effet, la majorité des points d’eau, au niveau du bassin Nebhana, montrent de faible acidité comparant à leur charge saline.

\[\text{Figure 53: répartition des variables sur le premier plan de l’ACP}\]
La projection des individus (les 44 points d’eau étudiés) sur le premier plan de l’ACP (Figure 54) montre l’individualisation de deux groupes de charge saline différente. Le premier groupe (G1) comporte les points d’eau qui montrent les valeurs les plus élevées de salinité. Ces sont principalement les puits (1), (16), (17), (18), (19), (20) et (21) souvent situés au centre du bassin Nebhana. Le reste des points d’eau étudiés constitue le second groupe (G2) qui révèle des faibles valeurs de salinité (Rs < 2 g/l). Ces puits sont généralement localisés à la bordure Nord de la zone d’étude. Les puits (4, 6, 7, 8, 9, 11 et 31) montrent des valeurs de Rs égale à 2 g/l constituant la limite entre les deux groupes. En effet, cette répartition spatiale montre que la salinité des eaux souterraines augment partant de la bordure Nord vers le centre du bassin indiquant une augmentation de la minéralisation des eaux dans le même sens.

Figure 54: répartition des individus sur le premier plan de l’ACP

2.3 **Classification Ascendante Hiérarchique (CAH)** :

Le dendrogramme de la classification hiérarchique de 39points d’eau étudiés au niveau du bassin Nebhana à la base de leur charge saline (Figure 55) montre 3 groupes de puits:
- le premier groupe (G1) renferme les points d’eau qui montrent des valeurs plus importantes de salinité (Rs > 2 g/l) et sont essentiellement situés au centre de la zone d’étude. Ceci montre l’importance de la minéralisation des eaux à ce niveau par la dissolution des évaporites chlorurées et du gypse ou bien de phénomène du dé-dolomitisation. En effet, les eaux de ces puits peuvent servir à des besoins domestiques autre que la potabilisation ;

- le second groupe (G2) renferme les puits qui montrent des valeurs de résidu sec égal à 2 g/l. Ces puits jouent le rôle de l’interface entre les eaux salines et les eaux douce.

- le dernier groupe (G3) comporte les puits qui montrent des eaux douces avec des valeurs les plus faibles de résidu sec (Rs < 2 g/l). Ces puits sont généralement localisés à la bordure Nord du bassin étudié et leurs eaux peuvent servir à au besoin de potabilisation.

Figure 55 : Dendrogramme représentant la classification des points d’eau par niveau de dissimilarités d’après le résidu sec.
3 L’eau potable Rurale et les GDAs

La consommation régulière d’eau est essentielle pour la santé humaine; cependant, la qualité et sécurité de l’eau potable représente une préoccupation grandissante. Le défi auquel font face tous les pays et particulièrement les régions rurales est la protection de la qualité de l’eau potable.

Les régions urbaines et rurales dans le bassin de Nebhana ont accès à l’eau des lacs, des rivières, des sources et des aquifères dont la qualité est relativement médiocre en plus de l’absence de systèmes efficaces de traitement des eaux.

Suivant l’échantillonnage et l’enquête sur terrain, toutes les familles visitées boivent la même eau qu’elles utilisent pour l’irrigation.

En effet, L’approvisionnement en eau potable dans le bassin de Nebhana, a d’abord consisté en l’installation de robinets publics au milieu des agglomérations, et les habitants se procuraient l’eau à l’aide de citernes pour les mieux lotis ou par des bidons en plastique portés par les femmes ou des animaux domestiques (surtout des ânes). Cette expérience s’est avérée peu concluante, surtout avec l’amélioration des conditions de vie des habitants, et le raccordement à domicile s’est avéré incontournable.

L’actionneur principal est les GDA de la région (35 GDA entre mère et filles).

Figure 56 : variation du volume d’eau potable dans le bassin de Nebhana (GR, SONEDE, Transfert)(CRDA, 2014)
Des éléments historiques permettent d’éclairer le fonctionnement de ces structures dont le rôle est vital dans la région où elles assurent la fourniture de l’eau potable à ses concitoyens habitant en milieu rural. En effet, les membres des GDA sont désignés par le délégué de la région qui, lui, se réfère à l’omdat lequel les désigne parmi les personnes « sûres » (politiquement alignées au RCD). Les conséquences de telles pratiques sont connues : les manquements aux dépassements du cadre légal sont couverts par les autorités et, en contre partie, les GDA versent une partie de leurs revenus au 26-26 et s’assurent l’impunité quant à leur gestion financière de l’argent qu’ils collectent des consommateurs qu’ils desservent. Cet argent sert essentiellement à entretenir le réseau et payer la facture de consommation d’électricité (pompage) et le personnel que les GDA auraient engagé.

Les réseaux gérés par les GDA sont mis en place par les services du ministère de l’Agriculture (station de pompage, canalisations…) et ces GDA sont tenus d’entretenir les réseaux dont ils ont la charge. Ils desservent non seulement les citoyens, mais aussi les établissements publics qui se trouvent dans leurs secteurs, surtout les dispensaires et les écoles primaires.

Il faut noter qu’il existe deux types de GDA : certains sont chargés de l’eau potable, alors que d’autres gèrent certains périmètres irrigués.

En 2011, certains GDA ont été « récupérés » par des citoyens, en vue de mettre un terme aux anciennes mauvaises pratiques, mais il faut aussi ajouter que certains des nouveaux gestionnaires des GDA ont maintenu les anciennes pratiques et abouti à un constat d’échec dans leur gestion. A partir de 2011 et la dissolution du RCD, la couverture politique assurée aux GDA a sauté, et ces derniers se sont vus désormais appelés à respecter la loi.
Il y a lieu d’ajouter qu’à chaque raccordement au réseau local se trouve un compteur qui permet de comptabiliser le volume d’eau consommé (et par conséquent la facture à payer). Certains dysfonctionnements se sont apparus dans ce système :

- Les compteurs ne sont pas normalisés, et certains consommateurs avaient tendance à enlever le compteur après la relève, pour le remettre quelques jours avant la relève suivante et, par conséquent, disposer de l’eau gratuitement ;
- Nombreux sont ceux qui se sont raccordés au réseau sans mettre de compteur. A remarquer que cette situation a commencé il y a plusieurs années et, comme personne n’a été poursuivi pour ce vandalisme, cette situation s’est amplifiée après 2011 avec le relâchement des contrôles ;
- Les réseaux mis en place au départ ne permettaient pas le raccordement de tous les habitants, et comme le nombre de raccordements (légaux ou illégaux) s’est amplifié, certains réseaux se sont trouvés dans l’incapacité de desservir toute leur clientèle ;
- Le raccordement illégal s’est tellement amplifié au point que l’eau destinée au départ à la consommation humaine s’est vue détournée pour l’irrigation de vergers ou de jardins familiaux ;
- Certains citoyens ont refusé de payer les factures qui leur reviennent, pour différentes raisons (sociale ou « politique », croyant qu’après 2011, ils ne paieraient pas leurs factures. Il faut remarquer ici que ce sont surtout les plus grands consommateurs (donc les plus aisés) qui refusent de payer.

La conséquence de ce qui précède est l’accroissement du volume d’eau pompé sur les réseaux et, par conséquent, l’augmentation de la facture de la STEG (pompage). Fait étonnant, la STEG n’a pas procédé à la coupure de l’électricité dès que les premières factures n’avaient pas été payées. La coupure de l’électricité n’a vu le jour qu’à partir de 2012 ou plus tard. Les dettes des GDA se sont donc accumulées et s’élèvent désormais à plusieurs milliards.

La coupure d’électricité n’affecte pas seulement les habitants des zones rurales pour lesquels des défauts de paiement ont été constatés, mais aussi les établissements publics qui s’y trouvent, notamment les écoles primaires. Ces dernières ont eu recours à l’installation de citernes ou d’autres systèmes d’approvisionnement pour assurer un minimum de volume d’eau destiné à la consommation.

Les habitants se sont rabattus sur des sources alternatives, notamment des puits ou des sources qui ne subissent pas de contrôle de qualité. C’est ainsi les analyses de l’eau potable de certains régions rurales du bassin de Nebhana, ont confirmées que la qualité de l’eau n’est pas bonne vue le taux de Sodium et Chlorure très élevées surtout dans la région d’El Metbassta et Sbikha.
Conclusion

En Tunisie, dans le bassin versant de Nebhana, Nord-ouest du gouvernorat de Kairouan, les systèmes hydriques fonctionnent sous des pressions naturelles, économiques et humaines. En effet, la situation actuelle des ressources en eau et de leurs usages dans le bassin, présente des enjeux communs à des nombreuses régions arides à semi-aride: des ressources limitées et déjà largement exploitées pour répondre à la croissance des besoins et des usages sectoriels. Des conditions climatiques contrai gnantes viennent pour renforcer les tensions sur les ressources.

L’étude hydrochimique des eaux souterraine du bassin de Nebhana met en évidence quatre sources de minéralisation possibles :

L’objectif de la présente étude englobe la caractérisation hydrogéologique de l’aquifère et l’identification des mécanismes de salinisation des eaux à l’aide des outils géochimiques afin de déterminer les origines possibles de laminéralisation. Quatre sources de minéralisation ont été mises en évidence.

La première source est la dissolution des évaporites chlorurées et du gypse. La seconde est liée au phénomène du dédolomitisation et de sursaturation en calcite et dolomite et de calcaires. La troisième source est liée probablement à la dissolution des sables silteux argileux et gypsifères. La quatrième source est liée à la dissolution de l’anhydrite, du gypse, et des carbonates qui sont rencontrés dans les intercalations stratigraphiques de la formation Fortuna.

La dégradation de la qualité des eaux de ce bassin n’est autre qu’une réponse directe des systèmes aquifères aux sollicitations anthropiques et agricoles.

Devant cette situation, penser à une gestion des ressources en eau demeure une priorité primordiale en mesure de réaliser des actions capables de renverser les tendances en termes d’une meilleure exploitation des ressources.