The use of *Cynodon dactylon* as soil cover for direct seeding in Madagascar

Bermuda grass (*Cynodon dactylon*) is known as a very invasive weed difficult to get rid of. All over the world, practices have been developed to try to eradicate this widely spread and common weed (Burton and Hanna, 1984). They are often based on intense land preparation with several ploughings and important work for removing the rhizomes and weeding.

However, *Cynodon dactylon* is a good forage and has several properties of a good cover crop: growing on poor soil, rapidly covering the soil and thus preventing erosion, having a deep and dense rooting system (improving soil structure, recycling nutrients), suppressing most other weeds, etc.

Trying to get benefit from these qualities, TIFA and CIRAD have developed with farmers techniques of direct seeding, using *Cynodon dactylon* as a soil cover.

Material and method

Experiments to control *Cynodon dactylon* started in 2001/2002 cropping season in the Highlands, in controlled plots, with direct planting of common bean in a *Cynodon dactylon* mulch as compared to ploughing (4 replications) and simple tests to adapt the land type and dose of herbicides needed to control (keeping it alive for a living cover) or kill the grass (dead mulch).

The good results obtained two consecutive years (over 2.2 t/ha of green bean directly seeded for less than 1 t/ha with ploughing) and the dramatic reduction in working time (Michellon et al., 2005, Charpentier et al., 2005) led to rapidly this technique for other crops (rice, soybean, cowpea, etc.) and in other regions, and to propose it for extension/tests with farmers.

Results presented here are those achieved with beans tested direct seeding in Bermuda grass in 2003/2004: 20 farmers in Antsampanimahazo village (1650 m above sea level) in the Highlands, and 16 in the Alaotra region (900 m a.s.l.).

Results

Cropping practices

- **Legumes.**
 1. *Cynodon dactylon* can be used as a dead mulch for cultivation of legumes (green bean, soybean, cowpea, Bambara bean). In that case, it is killed with 1800 to 2160 g/ha of glyphosate and legumes are directly seeded in its mulch. Fertilisation is not needed.
 2. *Cynodon dactylon* also can be used as a living cover for cultivation of these legumes. In that case, it is simply controlled (but not killed) with a lower dose of herbicide: 900 to 1080 g/ha of glyphosate before direct seeding. The *Cynodon* must be sufficiently controlled to avoid competition with the legume. This may not be killed to produce biomass after harvesting the crop. This requires precise herbicide application, and has the advantage of being cheaper and to produce more as a synergy seems to appear between the two plants when *Cynodon* is kept alive.

- **Rice.**
 3. *Cynodon dactylon* can be used as dead mulch for direct seeding of upland rice. It is killed, as for legumes, with 1800 to 2160 g/ha of glyphosate. To grow a cereal on a cover made of grass, mineral fertilisation (50 - 100 N/ha) is needed at sowing, as much decomposition leads to N immobilisation in the beginning of the plant cycle. Thanks to a good soil structure (due to *Cynodon* roots), rice yield over 4 t/ha can be reached with proper fertilisation technique.

4. The best practice for rice cultivation (especially in areas with a long dry season as in the Lac Alaotra) consists in killing *Cynodon* (1800 to 2160 g/ha of glyphosate) at the end of the previous rainy season (when it is in full vegetative stage, and very sensitive to systemic herbicides) to install a legume (as *Dolichos* lablab) which will grow in the dry season and fix nitrogen. The next rainy season, rice can then be directly planted in the mulch made by *Dolichos*, simply cut or rolled on the ground.

This technique can be used in the uplands ("Tany") as well as in the paddy fields with poor water control which are often invaded by Bermuda grass in the Alaotra region.

Yield and economic performances

With direct seeding on a *Cynodon* cover, the economic return for green bean, soybean or cowpea cultivation is extremely high as:

- **Yield** is doubled on average as compared to traditional practices with soil tillage (table 1).
- The **working time** is drastically reduced for land preparation and weeding. As a consequence, the labour is very well valorised (over 6 000 Ariary/day as compared to 1 500 Ariary/day for manpower).
- The **cost of herbicides** (45 000 to 50 000 Ariary/ha for killing the *Cynodon* with glyphosate) is equivalent to the cost of one ploughing with oxen (when ploughing at least twice is needed).

The net return is extremely interesting for Bambara bean as yield increase is tremendous (300 to 400 %) with a soil cover as compared to a tillled, bare soil. In the rich "Rafihoto" (recent alluvial soils, usually with poor water control), with a green bean production of 2.4 t/ha without fertilisation, the net return reaches a high 2 millions Ariary/ha (600 euros), and the labour productivity is 16 000 Ariary/day (Charpentier et al., 2005).

Conclusions

Local grass species known for their ability to improve soil structure (*Hypparhenia sp.*, *Stenotaphrum sp.* etc.) also can be used for direct planting in their mulch. Very promising results have been achieved with upland rice on *Anistra* sp. in the South Eastern coast of Madagascar, on hydro-morphic soils, usually uncultivated.

Other plants such as *Cynodon* Tifton or Kikuyu grass (*Pennuritum clandestinum*) have been tested (soybean yield reaching 2.3 to 2.9 t/ha in the highlands) and are now used by farmers as living cover (for rice or cassava production).

Experiments to use *Cynodon* for direct planting of other crops (such as Cassava) are being conducted. It can be expected that such systems, which combine protection of the environment and agro-economic performances, will rapidly be adopted on large scale by Malagasy farmers.

References

Charpentier, H.; Razanamparany, C.; Andriantsilavo, M.; Michellon, R.; Moussa, N. and Séguy, L., 1. 1. GSDM, BP 6039 Ambanidia, Antananarivo 101, Madagascar, gsdm.de@wanadoo.mg

Rakotondramanana; Husson, O.; Charpentier, H.; Razanamparany, C.; Andriantsilavo, M.; Michellon, R.; Moussa, N. and Séguy, L.

1. CIRAD, BP 6147, 54483 Villeneuve d’Ascq Cedex, France, charpentier@cirad.fr

2. IRAD, BP 91, Antananarivo, Madagascar, andriantsilavo@irad.mg

3. IRAD, BP 91, Antananarivo, Madagascar, razanamparany@irad.mg

4. TIFA, BP 8172, Antsirabe, Madagascar, chani@tifa.mg

5. IRAD, BP 91, Antananarivo, Madagascar, rakotondramanana@irad.mg

Funding: 1. GSDM, BP 6039 Ambanidia, Antananarivo 101, Madagascar, gsdm.de@wanadoo.mg

2. Tiffy, France

3. CIRAD, France

4. TIFA, Madagascar

5. TIFA, Madagascar

4. TIFA, Madagascar

5. TIFA, Madagascar